Select your language

Suggested languages for you:
Log In Start studying!
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Oxidation of Alcohols

Save Save
Print Print
Edit Edit
Sign up to use all features for free. Sign up now
Chemistry

You should know that oxidation is defined as the loss of electrons.

In addition, there are two other definitions of oxidation in organic chemistry:

  1. Removal of hydrogen.
  2. Addition of oxygen.

When alcohols are oxidised, hydrogen is removed and oxygen is added to the carbon attached to the -OH group.

Principles of alcohol oxidation

The structure of the alcohol affects the outcome of their oxidation. Regardless, all types of alcohol oxidation involve the same reagents.

Revision of alcohol structure

See if you can identify these isomers of butanol (molecular formula: C4H10O). Are they primary, secondary, or tertiary alcohols?

Oxidation of alcohols primary, secondary and tertiary alcohol StudySmarterIdentifying the different types of alcohols. StudySmarter Originals

'B' is a primary alcohol, 'A' is a secondary alcohol, and 'C' is a tertiary alcohol. 'A' is secondary because it has two R groups, while 'B' is primary because it has only one R group. 'C's three R groups make it tertiary. It is extremely important to understand this to see why primary, secondary, and tertiary alcohols have different outcomes upon oxidation. (Do refer to Alcohols should you struggle with this.)

Reagents of alcohol oxidation

There are two reagents used in alcohol oxidation - potassium dichromate (VI) and dilute sulfuric acid. Below is a table showing the molecular formulae and functions of these reagents.

Potassium dichromate (VI) K2Cr2O7Oxidising agent, facilitates the oxidation of alcohols
Dilute sulfuric acid H2SO4Catalyst, lowers the activation energy to speed up the reaction

The reaction mixture containing the two reagents is also known as acidified potassium dichromate (VI).

How do we oxidise primary alcohols?

Primary alcohols can undergo partial and full oxidation.

Product of partial oxidation

Primary alcohols contain only one R group attached to the C-OH carbon. Methanol, shown below, is an exception - it is a primary alcohol without any R groups.

Oxidation of Alcohols Structure of Methanol StudySmarterMethanol. Cacycle, commons.wikimedia.org

Butan-1-ol is the example given below, where the R group is highlighted in orange.

Oxidation of alcohols butanone with R group highlighted in orange StudySmarterwikipedia.org

Let’s now simplify the butan-1-ol structure further by representing the highlighted part with an R, and compare it with another molecule on the right.

Oxidation of Alcohols primary alcohol and aldehyde StudySmarter

Do you notice that the molecule on the right has one less hydrogen attached to the carbon? Also, instead of an OH group, the molecule on the right now has a double-bonded oxygen? To get from our primary alcohol to the molecule on the right, we use partial oxidation. This results in a product known as an aldehyde. The oxidation process also releases a water molecule.

The general chemical equation for the process is given below:

RCH2OH + Cr2O7 or [O] --------> RCHO + H2O

Remember to include the structural formula in your answers whenever you are asked to write chemical equations. Do also remember to expand on the R group! Also, [O] represents an oxidising agent.

Product of full oxidation

The aldehyde can further oxidise into a carboxylic acid. In this reaction, oxygen is added to the H bonded to the C=O carbon to form an -OH group as circled below. The new molecule now contains the C=O and OH functional groups, which combine to form the carboxylic acid functional group.

Oxidation of alcohols oxidation of an aldehyde into a carboxylic acid StudySmarter

In brief, partial oxidation of primary alcohols results in aldehydes, whereas full oxidation results in carboxylic acids.

Differences in the setup between partial and full oxidation of alcohols

If we want to produce aldehydes through partial oxidation, we use a technique called distillation with addition. We only gently heat the oxidising agent, potassium dichromate, and add the alcohol slowly to the heated flask. The aldehyde produced evaporates off immediately and travels through a condenser that condenses the aldehyde vapour. Evaporating the aldehyde immediately is important to prevent further oxidation of the aldehyde into a carboxylic acid, which we do not want. We then collect the condensed aldehyde in the receiver.

On the other hand, complete oxidation uses a reflux apparatus. The apparatus consists of a reaction flask with a condenser placed on the neck of the flask. By heating under reflux, the products of oxidation are contained in the vessel as the vapour condenses and drips back into the reaction flask. This prolongs the oxidation process, ensuring all the product is fully oxidised. Without reflux, the alcohol would first oxidise to an aldehyde which would evaporate off immediately. Using reflux traps the aldehyde so that it can oxidise further into a carboxylic acid.

Learn how to draw out the apparatus as exams do test you on that!

Oxidation of secondary alcohols

Secondary alcohols contain two R groups attached to the C-OH carbon.

Butan-2-ol is the example given below, where the R groups are highlighted in orange.

Oxidation of alcohols butan-2-ol with R groups highlighted StudySmarter

Oxidation product

Let’s now simplify the above structure further by representing the circled parts with R and R’, and compare it with another molecule on the right:

Oxidation of Alcohols oxidation of a secondary alcohol into a ketone StudySmarter

Do you notice that the molecule on the right has no hydrogens attached to the carbon? Also, instead of an OH group, the molecule on the right now has a double-bonded oxygen? Oxidation of a secondary alcohol results in the product on the right, known as a ketone. The oxidation process also releases a water molecule.

Note that ketones and aldehydes are isomers of each other. Aldehydes contain the carbonyl (C=O) group at the end of the carbon chain, as highlighted below. On the other hand, ketones have the carbonyl (C=O) group in the middle of the carbon chain. Furthermore, both functional groups have different names. Aldehydes use the suffix ‘-al’ (eg: propanal) whereas ketones use the suffix ‘-one’ (eg: propanone). This is shown in the example below.

Oxidation of Alcohols propanal with carbonyl propanone with carbonyl StudySmarter

The general chemical equation for the oxidation process is stated below:

RCH(OH)R’ + Cr2O7 or [O] --------> RCOR’ + H2O

Remember to include the structural formulae in your answers whenever you are asked to write chemical equations. Do also remember to expand on the R group!

Unlike aldehydes, which can be oxidised again into carboxylic acids, ketones cannot be oxidised further. This is because there are no carbon-hydrogen bonds on the carbonyl carbon left in ketones for oxidation to take place. Propanone is shown below.

Oxidation of alcohols propanone StudySmarter

Setup for the oxidation of secondary alcohols

As secondary alcohols will only be fully oxidised, the technique used would be heating under reflux.

The products of oxidation are contained in the vessel as the vapour condenses and drips back into the reaction flask. This prolongs the oxidation process, ensuring all the product is fully oxidised. The oxidation of secondary alcohols does not require immediate distillation.

Oxidation of tertiary alcohols

Tertiary alcohols contain three R groups attached to the C-OH carbon. The example below is a molecule of 2-methylpropan-2-ol with the R groups circled in blue.

Oxidation of alcohols tetiary alcohol with R groups circled StudySmarter

Let’s now simplify this molecule by replacing the circled R groups with R, R’ and R’’.

Oxidation of alcohols simplified tertiary alcohol StudySmarter

Since there are three R groups, there are no C-H bonds in tertiary alcohols. Thus, the lack of C-H bonds meant that tertiary alcohols can’t undergo oxidation. This is similar to why the ketones from the oxidation of secondary alcohols cannot be oxidised further. The enthalpy of the remaining C-C bonds is too high for oxidation to take place - breaking the C-C bonds for oxidation requires too much energy.

Even when 2-methylpropan-2-ol is heated with acidified potassium dichromate, the alcohol will remain unchanged.

How do we identify alcohols?

An alcohol can have a primary, secondary, or tertiary structure. To classify alcohols, we use a two-step process.

1. Rule out tertiary alcohols

This step is based on the principle that tertiary alcohols cannot be oxidised.

Oxidation of Alcohols oxidation with potassium dichromate StudySmarter

When heated with orange acidified potassium dichromate, a solution containing primary or secondary alcohols turns green, whereas a solution containing tertiary alcohols remains orange. The colour change is due to the dichromate ion getting reduced into Cr3+ as it acts as an oxidising agent.

2. Determine primary or secondary alcohols

If we know from step 1 that an unknown alcohol is not a tertiary alcohol, we can carry out step 2. As we learnt, ketones cannot be oxidised further whereas aldehydes can. So, we use another colour change to identify any aldehydes present in our solution. If there is a colour change, there must be an aldehyde present, hence our alcohol must have been a primary alcohol.

There are two approaches to this step. One is to heat under Fehling’s solution. The solution containing the primary alcohol would turn from blue to brick red.

Oxidation of alcohols Fehling's solution StudySmarter

Another approach is to heat the solution under Tollen’s reagent. A silver mirror is formed in the solution containing the primary alcohol.

Oxidation of alcohols Tollen's reagent StudySmarter

(The detailed mechanism behind the colour changes seen in both Fehling’s solutions and Tollen’s reagent is explored at A2 level.)

Comparing the oxidation of alcohols

To help make better sense of the principles underlying alcohol oxidation, here's a table to compare the oxidation of primary, secondary, and tertiary alcohols.

Alcohol name and structure

Class

Oxidation reaction techniques

Products upon oxidation

When heated under K2CrO4

When heated under Fehling’s or Tollen’s

Butan-1-ol

Oxidation of alcohols Butan-1-ol StudySmarter

Primary

Partial oxidation

  • Distillation with addition

Full oxidation

  • Heating with reflux

Partial - butanal and water

Full - butanoic acid and water

Colour change from orange to green

Fehling’s - blue to brick red

Tollen’s - silver mirror

Butan-2-ol

Secondary

Full oxidation

  • Heating with reflux

Butanone and water

Colour change from orange to green

Fehling’s - remains blue

Tollen’s - remains clear

2-methylpropan-2-ol

Oxidation of alcohols 2-methylpropan-2-ol StudySmarter

Tertiary

Irrelevant as cannot be oxidised

No oxidation products formed, hence irrelevant

Remains orange

Irrelevant

Oxidation of Alcohols - Key takeaways

  • Oxidation, from the mnemonic OILRIG (Oxidation is Loss Reduction is Gain), is defined as the loss of electrons. There are two other definitions of oxidation in organic chemistry - loss of hydrogen, and gain of oxygen, both on the same carbon where the functional group is attached.
  • The structure of alcohols influences the outcome of alcohol oxidation. Primary alcohols are oxidised into aldehydes upon partial oxidation and into carboxylic acids upon complete oxidation. Secondary alcohols are oxidised into ketones. Tertiary alcohols cannot be oxidised.
  • The setup differs between partial and complete oxidation. Partial oxidation involves a process called ‘distillation with addition’, whereas complete oxidation involves heating under reflux.
  • We use some of the principles behind alcohol oxidation to classify unknown alcohols. The unknown alcoholic solution is first heated under acidified potassium chromate (VI). If there is a colour change, then either Fehling’s solution or Tollen’s reagent is used to determine whether the solution is a primary or secondary alcohol.

Oxidation of Alcohols

The oxidation of alcohol is a type of reaction where alcohol loses hydrogens or gains oxygens in the presence of an oxidising agent such as acidified potassium dichromate.

Ketones are formed by the oxidation of secondary alcohols. Tertiary alcohols cannot be oxidised.

Yes, reflux is needed to oxidise secondary alcohols to the final product, ketone.

Only primary and secondary alcohols can be oxidised. Both alcohols will lose a proton, though only primary alcohols can gain extra oxygen to form carboxylic acids.

Final Oxidation of Alcohols Quiz

Question

Based on the OILRIG mnemonic, oxidation is the gain of electrons. True or False?

Show answer

Answer

False - oxidation is the LOSS of electrons.

Show question

Question

Outline two other definitions of oxidation specific to organic chemistry.

Show answer

Answer

Loss of hydrogens, and gain of oxygens, all on the same carbon.

Show question

Question

Name and describe the technique for oxidising ethanol into ethanal.


Show answer

Answer

Distillation with addition. The reagent mixture is heated with the ethanol being added slowly to immediately distill the ethanal vapour. Ethanal is collected in the receiver.

Show question

Question

Name and describe the technique that is responsible for oxidising propan-2-ol into propanone.


Show answer

Answer

Heating with reflux. The opening reflux apparatus is sealed to stop the vapour from escaping the vessel. There is a condenser surrounding the neck of the apparatus for the vapour to condense back into the reaction vessel.

Show question

Question

What are the two steps to identifying the class of alcohols?


Show answer

Answer

1. Heating the unknown solution under acidified potassium dichromate (VI).

2. Heating the unknown solution under Fehling’s solution or Tollen’s reagent (if NOT tertiary).

Show question

60%

of the users don't pass the Oxidation of Alcohols quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.