StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
Americas
Europe
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenHave you ever had a go at a high striker game at an amusement park? They're a traditional test of strength and power. You hit a lever with a hammer or pallet, which sends a puck shooting towards the top of a column. The more force you put into your blow, the higher up the column the puck moves. If you hit the lever hard enough, the puck will reach the top of the tower, and you'll be rewarded by the triumphant chime of a bell.
Fig. 1 - A traditional high striker.
Now, replace the high striker's lever with a molecule and its puck with an electron. If you supply an electron with the right amount of energy, it jumps from one energy level to a second, higher level. The more energy you provide, the greater the jump the electron can make.
The process of moving from one energy level to another is known as an electronic transition. In this article, we'll learn all about electronic transitions, their types, and how we use them to analyse mixtures and solutions in spectroscopy.
It's the moment you've been waiting for. You've stood in the queue and paid your fee; now it is time to step up to the game. You hoist up the heavy hammer and bring it crashing down onto the lever, then watch the puck shoot up the column. One meter, two, then three - does it reach the top?
The movement of the puck up the column, jumping from one height to another, is like an electronic transition in chemistry.
Electronic transition is the name for the process that takes place when an electron is excited from one energy level to another.
Let's explore that in more detail.
When you shine electromagnetic waves on an atom or molecule, you supply it with energy in the form of photons. Electrons can absorb the energy from these photons and use it to jump from one electron shell or molecular orbital, known as an energy level, to another. This second electron shell or molecular orbital is a much higher energy level than the first.
Each electron shell has a fixed energy level. Therefore, a jump from one energy shell to another requires a certain amount of energy. The energy of an electromagnetic wave depends on its wavelength, and so certain electron transitions require certain amounts of energy and absorb certain wavelengths of light.
We can use the analytical technique of spectroscopy to plot a graph of the light absorbed by an atom, molecule, or solution, separating the light waves by their wavelength. This graph is known as a spectrum. We can then use the spectrum to work out the energy absorbed by the atom, molecule, or solution, and deduce the electronic transitions that took place.
We mentioned that both bonded and non-bonded outer-shell electrons can be excited by electromagnetic waves. These electrons are found in different molecular orbitals:
Bonding orbitals are lower in energy than non-bonding orbitals. These in turn are lower in energy than anti-bonding orbitals. You can see the relative energy levels of different molecular orbitals in the diagram below:
Fig. 2 - A diagram showing the relative energy levels and order of non-bonding, bonding, and anti-bonding molecular orbitals.
When it comes to electronic transitions, electrons always jump from bonding or non-bonding orbitals to anti-bonding orbitals. Thus, the bonding and non-bonding orbitals form the ground state, and the anti-bonded orbitals form the excited state. We end up with four distinct types of electronic transitions, varying in the molecular orbitals involved:
Let's now consider the energy order of these different electronic transitions.
Look back to the diagram showing the relative energy levels of bonding, non-bonding and anti-bonding molecular orbitals. Jumping from one energy level to another requires energy, and as you'd expect, the energy required is equal to the energy difference between the two levels. As a result, the four different types of electronic transitions require different amounts of energy.
You can see the magnitude of energy associated with each type of electronic transition in the following diagram:
Fig. 3 - A diagram showing the energy associated with the four types of electronic transitions.
We can order the electronic transitions in terms of their associated energy:
Fig. 4 - A table showing the energy order of electronic transitions.
Remember that the energy associated with an electron transition is the energy difference between the ground state and the excited state.
So, σ → σ* transitions require more energy than, for example, n → π* transitions. Can we show this quantitively? The answer is yes - using a formula for electronic transitions.
Remember that electronic transitions occur when outer-shell electrons absorb energy from photons in electromagnetic radiation. The energy of the photon absorbed equals the energy difference between the electron's ground state and its excited state. Electromagnetic radiation exists over a vast spectrum, and the energy of the photon relates to its wavelength. Hence, different electronic transitions absorb radiation with different wavelengths.
We can use spectroscopy to find out the energy of the radiation absorbed by a molecule, atom, or solution to determine the energy of its electronic transitions, by looking at the spectra that this technique produces. Spectra show the wavelength of the absorbed light waves. Electromagnetic radiation wavelength and energy are related by a simple formula:
$$E=h\frac{c}{\lambda}$$
Here:
Try deriving the formula above yourself by combining the equation involving the frequency and wavelength of a photon, and the speed of light ( \(c=\lambda v\) ), with Planck's equation ( \(E=hv\) ). Here's how:
A molecule absorbs light with a wavelength of 124 nm. Calculate the energy used in the electronic transition.
To answer this question, we simply put our value of wavelength into the formula we learned above. However, we need to check our units carefully. We are given wavelength in terms of nanometers (nm), not meters (m). To convert nanometers into meters, we divide by 109:
$$\frac{124}{10^9}=1.24\times 10^{-7}\space m$$
Now, substitute this into the formula:
$$E=h\frac{c}{\lambda}$$ $$E=(6.63\times 10^{-34}\,m^2\,\frac{kg}{s})\frac{(3.00\times 10^8)\,m/s} {(1.24\times 10^{-7})\,m}$$
$$E=1.60\times 10^{-18}\space J$$
Electronic transitions are useful because they give us an idea of the structure of a molecule, or indeed, the composition and concentration of a mixture or solution. As previously mentioned, we get data about electronic transitions using spectroscopy.
Spectroscopy is an analytical technique that works to identify a sample based on its interaction with electromagnetic radiation.
Spectroscopy produces graphs known as spectra. The spectra show the wavelengths of light absorbed by the sample, which we now know are related to the energy absorbed during an electronic transition. Although the exact energy absorbed depends not only on the molecular orbitals involved in the electronic transition but also the entirety of the molecule's structure and any solvent it is dissolved in, certain electronic transitions are always associated with certain bands of light absorption. For example, the spectrum for a sample containing ethane has a band at 135 nm, which represents the σ → σ* transition1.
In general, electronic transitions are associated with ultraviolet or visible radiation. These types of radiation typically have wavelengths between 10-400 nm and 400-700 nm respectively (between 1 × 10-8 and 7 × 10-7 meters). But spectra can also display bands in other regions of the electromagnetic spectrum. The bands show that the molecule absorbed electromagnetic radiation with different wavelengths, associated with either a change in molecular rotational levels or a change in molecular vibration levels. These are both types of molecular transitions.
Fig. 5 - A diagram showing the regions of the electromagnetic spectrum and the molecular or electronic transitions that they are associated with.
Electronic transitions are responsible for the brilliant colours of the fireworks you might see on Independence Day, or New Year's Eve. Fireworks contain specific metals. When you heat the metal, you supply it with energy, which - you guessed it - excites some of its outer-shell electrons. Moving from ground state to an excited state makes the metal very unstable, so it then tries to release the absorbed energy in the form of electromagnetic radiation. Like before, the energy of the radiation relates to its wavelength, which in turn relates to its place on the electromagnetic spectrum. If the radiation's wavelength happens to fall in the region visible to our eyes, then you end up with a dazzling display of bright light and colour!
An electronic transition is the process that takes place when an electron is excited from one energy level to another.
The types of electronic transitions are:
Electronic spectroscopy is an analytical technique used to find out the identity and electronic structure of molecules and atoms. It works by shining electromagnetic radiation on a molecule, which excites electrons from one energy level to a second, higher level. This absorbs certain wavelengths of radiation. The wavelength of the light absorbed can be seen on a spectrum and relates to the energy difference between the two energy levels.
An example of an electronic transition is an n → σ*transitionn. Here, an electron in a non-bonding molecular orbital jumps to a sigma anti-bonding orbital.
Electronic transitions refer to the process when electrons jump from one energy level to another. However, a vibrational transition is when a molecule changes vibrational states.
Be perfectly prepared on time with an individual plan.
Test your knowledge with gamified quizzes.
Create and find flashcards in record time.
Create beautiful notes faster than ever before.
Have all your study materials in one place.
Upload unlimited documents and save them online.
Identify your study strength and weaknesses.
Set individual study goals and earn points reaching them.
Stop procrastinating with our study reminders.
Earn points, unlock badges and level up while studying.
Create flashcards in notes completely automatically.
Create the most beautiful study materials using our templates.
Sign up to highlight and take notes. It’s 100% free.
Over 10 million students from across the world are already learning smarter.
Get Started for Free