 Suggested languages for you:

Europe

|
|

# Gay-Lussac's Law

Gay-Lussac's Law
• Chemical Analysis • Chemical Reactions • Chemistry Branches • Inorganic Chemistry • Ionic and Molecular Compounds • Kinetics • Making Measurements • Nuclear Chemistry • Organic Chemistry • Physical Chemistry • The Earths Atmosphere  Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Nie wieder prokastinieren mit unseren Lernerinnerungen. Once winter hits and the air starts getting colder, you might notice your car or bike's tires looking a little deflated. Did your tires spring a leak? While it may seem like it, no air has escaped, it's the pressure that's decreased, not the amount of air itself.

So what happened? Well, this is because of the decrease in temperature. In this article, we will learn about Gay-Lussac's law, which explains the relationship between temperature and pressure for gases.

• First, we will do an overview of the components of Gay-Lussac's law (ideal gas, temperature, and pressure)
• Then, we will learn about Gay-Lussac's law and understand what it means
• Next, we will look at the equation that is paired with the law and use it in an example

## Gay-Lussac's Law Overview

Before we learn about Gay-Lussac's law, let's do a brief overview of the components involved: ideal gases, temperature, and pressure. First up, let's talk about ideal gases.

When looking at this law and other related gas laws, we are typically applying them to ideal gases, instead of "real" ones:

An ideal gas is a theoretical gas that follows these rules:

• They are constantly moving.
• They have a negligible mass.
• They do not attract or repel other particles.
• They have full elastic collisions (no kinetic energy is lost).
Ideal gases are a way to approximate gas behavior, since "real" gases can be a bit tricky due to factors like particles interactions (attracting and repelling). However, the ideal gas model becomes a less accurate approximation for the behavior of a real gas once it reaches low temperatures and high pressure.Now let's talk about temperature. Temperature isn't just a measure of how hot or cold something is, it is also a measure of the average kinetic energy, which is the energy of motion. In other words, temperature tells us how fast particles are moving. The higher the temperature, the faster the particle.

Lastly, let's talk about pressure. Since (ideal) gases are constantly in motion, they often collide with each other and the walls of their container. Pressure is the force of the gas particles colliding with a wall, divided by the area of that wall.

Now that we've learned about the key players, let's talk about Gay-Lussac's Law

## Gay-Lussac's Law Statement

Gay-Lussac's Law states that the pressure of a gas (with a given mass and constant volume) will be proportional to the temperature of the gas.

In other words, the pressure exerted by a gas is proportional to its temperature when mass and volume are fixed.

## Gay Lussac's Law Explanation

As we talked about earlier, temperature tells us how much kinetic energy a gas has, which in turn tells us how fast it is moving. When temperature increases, the more the gas particles will move around in their container, which increases the likelihood of collisions. Since the number of collisions is increasing, therefore so is the pressure (since more collisions=more force applied).

Here is a diagram to illustrate this: Fig.1-Diagram of Gay-Lussac's law

On the right-hand side, the gas particles have an initial temperature and pressure (P1). When the temperature increases (shown by an increase in arrows), the pressure also increases (P2). We can see this change by looking at how the number of collisions increases (both wall and particle-particle collisions).

To make sure the law is followed, the mass of the particles and the volume of the container have stayed the same.

Essentially, Gay-Lussac's law states that since the temperature is increasing, the pressure should also increase by a proportionate amount.

In our introduction, we talked about tire pressure decreasing with the weather. When the temperature decreases, the pressure will also decrease. The same quantity of gas is in the tire, but the pressure has decreased, so the tire will appear less "firm" and look deflated.

## Gay-Lussac's law equation

Gay-Lussac's law can be expressed mathematically in two different ways.

The first is like this:

$$P \propto T$$

Where P is pressure, T is temperature, and ∝ is the symbol for "proportional to".

This first equation is essentially just the definition written in mathematical form.

Our next equation requires some slight derivation. First, let's look at a general graph for the law: Fig.2-Gay-Lussac's law graph

The graph is linear ($$y=mx$$), with the slope (m) being the proportionality constant.

The standard linear equation is y=mx+b, where b is the y-intercept. When the temperature (x) is 0, then there is no movement of gases, meaning that the pressure (y) is also 0. This means that the y-intercept is also 0.

The equation for the graph looks like this:

$$P=mT$$

Or, to put it another way:

$$\frac{P}{T}=m$$

This means that for any given pressure and volume (for an ideal gas), they will have a ratio of m.

Using this equation, we can derive the other form of Gay-Lussac's law:

$$\frac{P_1}{T_1}=m$$

$$\frac{P_2}{T_2}=m$$

$$\frac{P_1}{T_1}=\frac{P_2}{T_2}$$

We can use this equation to solve for the new pressure or temperature of a gas when the other variable has been changed.

The ideal gas law

Gay-Lussac's law can be combined with other gas laws (such as Charles's law and Boyle's law) to create the ideal gas law.

The ideal gas law describes how ideal gases behave, the formula is:

$$PV=nRT$$

Where P is pressure, V is volume, n is the number of moles of gas, R is the gas constant, and T is temperature.

We can see where Gay-Lussac's law fits in since P and T are directly proportional (they are on opposite sides of the equation, which indicates direct proportionality).

## Gay-Lussac's law examples

Now that we are familiar with the equation, let's put it to use in an example problem.

A 20 L container of nitrogen gas has an initial temperature and pressure of 300 K and 0.8 atm. If the temperature is increased to 425 K, what is the new pressure of the container, assuming the mass and volume stay fixed?

Given the problem, here are the values of our variables:

$$P_1=0.8\,atm\,\,T_1=300\,K\,\,P_2=?\,\,T_2=425\,K$$

So all we need to do is plug these values into our equation and solve for P2:

$$\frac{P_1}{T_1}=\frac{P_2}{T_2}$$

$$T_2*\frac{P_1}{T_1}=P_2$$

$$P_2=(425\,K)*\frac{0.8\,atm}{300\,K}$$

$$P_2=1.13\,atm$$

As an aside, we can also solve for m to calculate either a pressure change or a temperature change (if given the other variable).

In the case above, m would be:

$$\frac{P_1}{T_1}=m$$

$$\frac{0.8\,atm}{425\,K}=0.00188\frac{atm}{K}$$

So what does this mean exactly? Well, if I am given a new temperature, I would multiply it by this factor to get the new pressure. If I was given a new pressure, I would divide it by the factor to get the new temperature.

For example, at 500 K:

$$500\,K*0.00188\frac{atm}{K}=0.94\,atm$$

and at, 1.23 atm:

$$\frac{1.23\,atm}{0.00188\frac{atm}{K}}=654\,K$$

The main point here is that there are several ways you could solve this problem, as long as you follow Gay-Lussac's Law.

## Gay-Lussac's Law - Key takeaways

• An ideal gas is a theoretical gas that follows these rules:
• The gas particles are constantly moving.
• The gas particles have a negligible mass.
• The gas particles have negligible volume.
• They do not attract or repel other particles.
• They have full elastic collisions (no kinetic energy is lost)
• Gay-Lussac's Law states that the pressure of a gas (with a given mass and constant volume) will be proportional to the temperature of the gas.
• The formulas for Gay-Lussac's law are:
• $$P \propto T$$ (Where P is pressure, T is temperature, and ∝ is the proportion symbol)
• $$\frac{P_1}{T_1}=\frac{P_2}{T_2}$$

Gay-Lussac's Law states that the pressure of a gas (with a given mass and constant volume) will be proportional to the temperature of the gas.

The pressure exerted by a gas is proportional to its temperature when mass and volume are fixed.

The formula for Gay-Lussac's law is

P1T1=P2T2

Where P is pressure and T is temperature.

In the winter, car tires will become deflated/less pressurized since the drop in temperature causes a drop in pressure.

Gay-Lussac's law is used for ideal gases, which approximate the behavior of real gases. This law (and other ideal gas laws) begin to fail at low temperatures and high pressure.

## Gay-Lussac's Law Quiz - Teste dein Wissen

Question

What is Gay-Lussac's law?

Gay-Lussac's Law states that the pressure of a gas (with a given mass and constant volume) will be proportional to the temperature of the gas.

Show question

Question

Which of the following is NOT true about an ideal gas?

They are only atoms, not molecules

Show question

Question

What is temperature a measure of?

Kinetic energy

Show question

Question

True or False: Pressure is the force of gas particles colliding with each other and their container

False

Show question

Question

True or False: Pressure is always proportional to temperature (for gases)

False

Show question

Question

Which of the following best matches the definition formula for Gay Lussac's law

$$P \propto T$$

Show question

Question

When pressure versus temperature is graphed, what does the slope represent?

The ratio of pressure to temperature (or the proportionality between the two)

Show question

Question

Which of the following is the correct formula for Gay-Lussac's law?

$$\frac{P_1}{T_1}=\frac{P_2}{T_2}$$

Show question

Question

Gay-Lussac's law is a component in what other law?

The ideal gas law

Show question

Question

A container of hydrogen gas is initially at a pressure of 0.76 atm and a temperature of 450 K. What is the new pressure if the temperature is raised to 600 K?

1.01 atm

Show question

Question

A car tire full of nitrogen is initially at a pressure of 2.18 atm and a temperature of 291 K. If the temperature drops to 272 K, what is the new pressure?

2.04 atm

Show question

Question

If the pressure of a container of nitrogen gas has a pressure of 1.03 atm and a temperature of 300 K, what is the proportionality constant (m)?

0.00343 $$\frac{atm}{K}$$

Show question

Question

What is the ideal gas law formula?

$$PV=nRT$$

Show question

Question

Does Gay-Lussac's Law apply to real gases?

No, only ideal

Show question

Question

What factors have to be constant for Gay-Lussac's Law to apply?

Mass of container

Show question 60%

of the users don't pass the Gay-Lussac's Law quiz! Will you pass the quiz?

Start Quiz

### No need to cheat if you have everything you need to succeed! Packed into one app! ## Study Plan

Be perfectly prepared on time with an individual plan. ## Quizzes

Test your knowledge with gamified quizzes. ## Flashcards

Create and find flashcards in record time. ## Notes

Create beautiful notes faster than ever before. ## Study Sets

Have all your study materials in one place. ## Documents

Upload unlimited documents and save them online. ## Study Analytics

Identify your study strength and weaknesses. ## Weekly Goals

Set individual study goals and earn points reaching them. ## Smart Reminders

Stop procrastinating with our study reminders. ## Rewards

Earn points, unlock badges and level up while studying. ## Magic Marker

Create flashcards in notes completely automatically. ## Smart Formatting

Create the most beautiful study materials using our templates. 