Select your language

Suggested languages for you:
Log In Start studying!
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Shapes of Molecules

Save Save
Print Print
Edit Edit
Sign up to use all features for free. Sign up now
X
Illustration You have already viewed an explanation Register now and access this and thousands of further explanations for free
Chemistry

Water and carbon dioxide are both triatomic molecules. The similarities go even further - they are both partially formed from oxygen and they both contain covalent bonds. However, their molecules are very different in shape. Whilst the atoms in carbon dioxide are held in a straight line, water is a bent molecule. To understand why this is the case, we need to take a look at electron pair repulsion, VSEPR.

Valence shell electron pair repulsion theory, or VSEPR, is a model used in chemistry to predict the shape of molecules.

If we break that term down a little, we can understand what it means.

You should know that electrons tend to go around in pairs. This is because orbitals, which are regions of space where electrons can be found 95 percent of the time, can contain at most two electrons (check out Electron Shells, Subshells, and Orbitals for a refresher). Because electrons are charged particles, electron pairs will repel each other and try to be as far away from each other as possible. An atom’s outer shell of electrons is known as its valence shell. Because the valence electrons in a simple covalent molecule are the bonded electrons, electron pair repulsion determines the way in which the bonds are positioned. This dictates the shape of the molecule.

VSEPR states that electron pairs all repel each other and will try to take up positions as far away from each other as possible, in order to minimise repulsion. It simply uses our knowledge of the behaviour of electrons to predict the shape of simple covalent compounds. Check out Covalent and Dative Bonding to remind yourself of how atoms share electrons in order to achieve stable electron configurations.

How do you draw the shapes of molecules in 3D?

Before we look at any examples of covalent structures, we need to learn how you can represent them. You might remember that we can draw covalent bonds as a line between two atoms. This gives a simple picture of molecules. However, if we want to better show a molecule’s 3D shape, we can use wedged and dotted lines.

  • Wedged lines show a bond coming out of the screen or page towards you.
  • Dotted or dashed lines show a bond going into the screen or page away from you.
  • Lone pairs of electrons are shown as dots.
  • Any standard straight lines simply show a planar bond.

The methane molecule is a good example of this:

Shapes of Molecules, methane, StudySmarterA methane molecule, CH4. The central wedged bond protrudes out of the screen whilst the right hand dashed bond extends backwards. commons.wikimedia.org

The various shapes of molecules

If all the pairs of valence electrons in an atom are bonded, they will all repel each other mutually. This results in bonds spaced equally far apart. The number of bonded electron pairs affects the shape of the molecule and the angle between the bonding pairs.

Let’s take a look at some of the most common shapes. However, you should bear in mind that these rules only apply to molecules with no lone pairs of electrons. Lone pairs of electrons are unshared pairs that aren’t covalently bonded. We’ll explore their effect further later.

Linear

If a molecule only has two bonded electron pairs (and no lone pairs), it forms a linear molecule. The simplest example is beryllium chloride, . Although beryllium is a metal, it can bond covalently to chlorine. Beryllium only has two electrons in its valence shell and so forms two bonds. The electron pairs will repel each other equally, resulting in an angle between the two bonds of 180°.

Shapes of molecules, beryllium chloride linear, StudySmarterBeryllium chloride. Each of beryllium's valence electrons forms a covalent bond with a chlorine atom. The angle between the bonds around the central beryllium atom is 180°.StudySmarter Originals

Trigonal planar

Molecules with three bonded electron pairs are known as trigonal planar. This is because the bond angle between each bond is 120°, so the bonds lie flat on a plane. You could stack the molecules up one on top of the other like sheets of paper. Boron trifluoride is an example.

Shapes of molecules, boron trifluoride trigonal planar, StudySmarterBoron trifluoride. The bonds are held apart at an angle of 120°.StudySmarter Originals

Tetrahedral

Molecules with four bonded electron pairs and no lone pairs form a tetrahedral shape. This is a regular triangular-based pyramid. All the bond angles are 109.5°. For example, the carbon in methane () has four valence electrons, and each electron is part of a pair bonded covalently to a hydrogen atom. It is a tetrahedral molecule.

Shapes of molecules, methane tetrahedral, StudySmarterMethane. The angle between each bond around the central atom is 109.5°.StudySmarter Originals

Trigonal bipyramidal

Molecules with five bonded electron pairs form a trigonal bipyramid. This shape is similar to a trigonal planar molecule but with two further bonds held at 90° extending above and below the plane. Phosphorus(V) pentachloride is a good example.

Shapes of molecules, phosphorus(V) pentachloride trigonal bipyramid, StudySmarterPhosphorus(V) pentachloride. Three planar bonds have angles of 120° between them, whilst two further bonds are held at right angles to the plane.StudySmarter Originals

Octahedral

If a molecule has six bonding pairs around a central atom, it forms an octahedral structure. All of the bonds are at right angles to each other, as shown in sulfur hexafluoride.

Shapes of molecules, sulfur hexafluoride octahedral, StudySmarterSulfur hexafluoride has six bonded electron pairs. All bond angles are 90°. StudySmarter Originals

Lone pairs of electrons

All of our above examples use molecules that don’t have any lone pairs of electrons. All their valence electrons are bonded. But what happens if a molecule does have a lone pair? Let’s take a molecule with four electron pairs as an example.

We now know that if all of the electrons are part of bonding pairs, the molecule will be tetrahedral and have bond angles of 109.5°. However, if one of the electron pairs is in fact a lone pair, the bond angles are reduced to 107°. This is because lone pairs repel each other more strongly than shared pairs, squeezing the bonds together. Each lone electron pair in a molecule with eight valence electrons reduces the bond angle by 2.5°, so a molecule with two bonding pairs and two lone pairs will have a bond angle of 104.5°. The following table shows the relative strength of repulsion between combinations of bonded and lone pairs of electrons.

Shapes of molecules, lone electron pair repulsion, StudySmarterA table comparing the strength of repulsion between bonded and lone pairs of electrons. StudySmarter Originals

Let’s now look at the shapes formed by molecules with lone pairs.

Pyramidal

A molecule with three bonded electron pairs and one lone electron pair around a central atom has an angle of 107° between each bond. An example is ammonia, . The nitrogen atom contains five valence electrons. Three are covalently bonded to hydrogen atoms and the remaining two form a lone pair. This lone pair repels the bonding pairs more strongly than the bonding pairs repel each other, reducing the bond angle and forming a pyramidal molecule.

Shapes of molecules, ammonia pyramidal, StudySmarterAn ammonia molecule. Compared to a tetrahedral molecule with no lone pairs, the bond angle is reduced by 2.5°. StudySmarter Originals

V-shaped

A molecule with two lone pairs and two bonding pairs has its bond angle reduced even further to 104.5°. This forms a v-shaped molecule, such as water, .

Shapes of molecules, water v shaped, StudySmarterA v-shaped water molecule. StudySmarter Originals

The following diagram summarises the different shapes of molecules.

Shapes of molecules, shapes of molecules table summary, StudySmarterA table summarising the shapes of different molecules. StudySmarter Originals

Examples of the shapes of molecules

Let’s go back to our original molecules, water and carbon dioxide. We’ve already discovered that water has a v-shaped structure due to the effect of its lone electron pairs on the bonding pairs. But what sort of shape does carbon dioxide have?

By drawing a dot and cross diagram we can see that carbon dioxide, , has two double bonds. These double bonds can be thought of as single units when it comes to shape. Like single bond electron pairs, these groups of four electrons will want to be as far apart from each other as possible. This forms a linear molecule with a bond angle of 180°.

Carbon dioxide. Although it contains four bonding pairs of electrons, the pairs are arranged as two double bonds. Each double bond is considered as a single unit, so the molecule is linear. commons.wikimedia.org

Another example is xenon tetrafluoride, . Xenon contains eight electrons in its valence shell. Four form bonds with fluorine atoms and four remain as two lone pairs. This forms what is known as a square planar arrangement, with the lone pairs at 180° to each other, and the angle between the bonding pairs at 90°. Note its similarity to an octahedral arrangement.

Shapes of molecules, xenon tetrafluoride square planar, StudySmarterXenon tetrafluoride. The lone pairs of electrons are positioned above and below the plane.StudySmarter Originals

Shapes of Molecules - Key takeaways

  • VSEPR, also known as valence shell electron pair repulsion theory, states that electron pairs repel each other and will try to take up positions as far away from each other as possible, in order to minimise repulsion. This influences the shapes of molecules.
  • You can use straight lines to represent covalent bonds. Wedged lines show a bond protruding out of the page and dashed or dotted lines show a bond extending backwards.
  • Lone pairs of electrons repel each other more strongly than bonding pairs. Each lone pair reduces the bond angle by 2.5° in molecules with four electron pairs.
  • Common molecule shapes with no lone pairs of electrons include linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.
  • Common molecule shapes with lone pairs of electrons include pyramidal and v-shaped.

Shapes of Molecules

Water molecules are v-shaped.

DNA forms a double helix shape.

Methane molecules are tetrahedral in shape.

Xenon tetrafluoride is square planar in shape.

To work out the shape of a molecule, identify how many lone and bonding pairs of electrons it has. This dictates its shape. For example, the oxygen atom in a water molecule has two lone pairs and two bonding pairs. This gives it a v-shaped structure.

Molecules with polar bonds are often polar molecules. However, if the molecule is symmetrical, the charges of the polar bonds cancel out and the molecule is non-polar overall.

Final Shapes of Molecules Quiz

Question

What does VSEPR stand for?

Show answer

Answer

Valence shell electron pair repulsion theory.


Show question

Question

What does VSEPR state?


Show answer

Answer

  • Electron pairs repel each other.
  • Electron pairs will try to take up positions as far away from each other as possible, in order to minimise repulsion.


Show question

Question

What is a valence electron?


Show answer

Answer

An outer shell electron.

Show question

Question

How do you draw a bond extending forwards out of the page/screen?


Show answer

Answer

With a wedged line.

Show question

Question

How do you draw a bond extending backwards out of the page/screen?


Show answer

Answer

With a dashed line.

Show question

Question

Name the shapes formed by the molecules with the following number of pairs of bonded electrons. Assume that they have no lone (unshared) pairs.

  1. 2

  2. 3

  3. 4

  4. 5

  5. 6


Show answer

Answer

  1. Linear.
  2. Trigonal planar.
  3. Tetrahedral.
  4. Trigonal bipyramidal.
  5. Octahedral.

Show question

Question

 Give the bond angles found in molecules with the following numbers of bonded electron pairs. Assume the molecules have no lone pairs.

  1. 2
  2. 3
  3. 4
  4. 5
  5. 6

Show answer

Answer

  1. 180°
  2. 120°
  3. 109.5°
  4. 120° and 90°.
  5. 90

Show question

Question

 Give the bond angles found in molecules with the following numbers of bonded electron pairs. Assume the molecules have no lone pairs.

  1. 2
  2. 3
  3. 4
  4. 5
  5. 6

Show answer

Answer

  1. 180°
  2. 120°
  3. 109.5°
  4. 120° and 90°.
  5. 90

Show question

Question

 Give the bond angles found in molecules with the following numbers of bonded electron pairs. Assume the molecules have no lone pairs.

  1. 2
  2. 3
  3. 4
  4. 5
  5. 6

Show answer

Answer

  1. 180°
  2. 120°
  3. 109.5°
  4. 120° and 90°.
  5. 90

Show question

Question

A molecule has four bonding pairs of electrons. Explain the effect on the bond angle if one of the pairs is instead a lone pair.


Show answer

Answer

The bond angle will reduce by 2.5°. This is because lone pairs repel each other more strongly than bonding pairs and so squeeze the bonding pairs closer together.

Show question

Question

Each lone pair of electrons reduces the bond angle by _______ ° .

Show answer

Answer

2.5

Show question

Question

Name the shape of a molecule with three bonding pairs and one lone pair.


Show answer

Answer

Pyramidal.


Show question

Question

 Name the shape of a molecule with two bonding pairs and two lone pairs.

Show answer

Answer

V-shaped.

Show question

Question

What does the VSEPR acronym stand for?

Show answer

Answer

Valence shell electron pair repulsion

Show question

Question

Electron domain geometry is the same as molecular shape geometry.

Show answer

Answer

True

Show question

Question

What is the angle created by the bonds in H2O?

Show answer

Answer

109.5°

Show question

Question

Which has a stronger repulsion: lone pairs or bonded pairs of electrons?

Show answer

Answer

Lone pairs. 

Show question

Question

Methane, CH4, is an example of which kind of molecular geometry?

Show answer

Answer

Tetrahedral

Show question

Question

Which of the following molecules does not have a linear geometry?

Show answer

Answer

CO2

Show question

Question

What are the angles created in an octahedral geometry?

Show answer

Answer

90° and 180°

Show question

Question

What are the two types of geometry in which a 120° angle can be created?

Show answer

Answer

Trigonal planar, and trigonal bipyramidal. 

Show question

Question

Does NH3 have a trigonal planar geometry? Why or why not?

Show answer

Answer

No, it has a trigonal pyramidal geometry since it has 4 electron groups, one of which is a lone pair on the (central) nitrogen atom. 

Show question

Question

What type of shape do molecules with four electron domains adopt? What is the bond angle?

Show answer

Answer

Tetrehedral, 109.5°

Show question

Question

What are Lewis structures?

Show answer

Answer

2D representations of molecules that depict the bonded electrons and lone pairs of electrons.

Show question

Question

Who was the VSEPR theory proposed by?

Show answer

Answer

Ronald Gillespie and Sir Ronald Nyholm

Show question

Question

In which year was the VSEPR theory published?

Show answer

Answer

1957

Show question

Question

Has the VSEPR theory been tested?

Show answer

Answer

Yes, both experimentally and with simulations. 

Show question

Question

Can you apply the VSEPR theory to one electron domain?

Show answer

Answer

No. 

Show question

60%

of the users don't pass the Shapes of Molecules quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.