Select your language

Suggested languages for you:
Log In Start studying!
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Application of Derivatives

Application of Derivatives

You want to record a rocket launch, so you place your camera on your trusty tripod and get it all set up to record this event. Now, only one question remains: at what rate should your camera's angle with the ground change to allow it to keep the rocket in view as it makes its flight?

Because launching a rocket involves two related quantities that change over time, the answer to this question relies on an application of derivatives known as related rates. In this article, you will discover some of the many applications of derivatives and how they are used in calculus, engineering, and economics.

Applications of Derivatives in Calculus

Being able to solve the related rates problem discussed above is just one of many applications of derivatives you learn in calculus. You will also learn how derivatives are used to:

  • find tangent and normal lines to a curve, and

  • find maximum and minimum values.

You will then be able to use these techniques to solve optimization problems, like maximizing an area or maximizing revenue.

Additionally, you will learn how derivatives can be applied to:

  • solve complicated limits,

  • make approximations, and

  • to give accurate graphs.

Application of Derivatives: Tangent and Normal Lines

Derivatives are very useful tools for finding the equations of tangent lines and normal lines to a curve.

Application of Derivatives tangent and normal lines to a curve StudySmarterUsing the derivative to find the tangent and normal lines to a curve.

Tangent Lines to a Curve

The tangent line to a curve is one that touches the curve at only one point and whose slope is the derivative of the curve at that point.

To find the tangent line to a curve at a given point (as in the graph above), follow these steps:

  1. Given a point and a curve, find the slope by taking the derivative of the given curve.
    • The given point is: \[ (2, 4) \]
    • The given curve is: \[ f(x) = x^{2} \]
    • The derivative of the given curve is: \[ f'(x) = 2x \]
  2. Plug the \( x \)-coordinate of the given point into the derivative to find the slope.\[ \begin{align}f'(x) &= 2x \\f'(2) &= 2(2) \\ &= 4 \\ &= m.\end{align} \]
  3. Use the point-slope form of a line to write the equation.\[ \begin{align}y-y_1 &= m(x-x_1) \\y-4 &= 4(x-2) \\y &= 4(x-2)+4 \\ &= 4x - 4.\end{align} \]

For more information and examples about this subject, see our article on Tangent Lines.

Normal Lines to a Curve

The normal line to a curve is perpendicular to the tangent line. You use the tangent line to the curve to find the normal line to the curve. The slope of the normal line is:

\[ n = - \frac{1}{m} = - \frac{1}{f'(x)}. \]

To find the normal line to a curve at a given point (as in the graph above), follow these steps:

  1. Find the tangent line to the curve at the given point, as in the example above.
    • The tangent line to the curve is: \[ y = 4(x-2)+4 \]
  2. Use the slope of the tangent line to find the slope of the normal line.
    • The slope of the normal line to the curve is:\[ \begin{align}n &= - \frac{1}{m} \\n &= - \frac{1}{4}\end{align} \]
  3. Use the point-slope form of a line to write the equation.\[ \begin{align}y-y_1 &= n(x-x_1) \\y-4 &= - \frac{1}{4}(x-2) \\y &= - \frac{1}{4} (x-2)+4\end{align} \]

Application of Derivatives: Related Rates

In many real-world scenarios, related quantities change with respect to time. If you think about the rocket launch again, you can say that the rate of change of the rocket's height, \( h \), is related to the rate of change of your camera's angle with the ground, \( \theta \). In this case, you say that \( \frac{dg}{dt} \) and \( \frac{d\theta}{dt} \) are related rates because \( h \) is related to \( \theta \).

In related rates problems, you study related quantities that are changing with respect to time and learn how to calculate one rate of change if you are given another rate of change.

Strategy: Solving Related-Rates Problems

  1. Assign symbols to all the variables in the problem and sketch the problem if it makes sense.
  2. In terms of the variables you just assigned, state the information that is given and the rate of change that you need to find.
  3. Find an equation that relates your variables.
  4. Using the chain rule, take the derivative of this equation with respect to the independent variable.
  5. Substitute all the known values into the derivative, and solve for the rate of change you needed to find.

It is crucial that you do not substitute the known values too soon. If you make substitute the known values before you take the derivative, then the substituted quantities will behave as constants and their derivatives will not appear in the new equation you find in step 4.

There are lots of different articles about related rates, including Rates of Change, Motion Along a Line, Population Change, and Changes in Cost and Revenue.

Application of Derivatives: Linear Approximations and Differentials

When it comes to functions, linear functions are one of the easier ones with which to work. Therefore, they provide you a useful tool for approximating the values of other functions. You will build on this application of derivatives later as well, when you learn how to approximate functions using higher-degree polynomials while studying sequences and series, specifically when you study power series.

The key concepts and equations of linear approximations and differentials are:

  • A differentiable function, \( y = f(x) \), can be approximated at a point, \( a \), by the linear approximation function:

    \[ L(x) = f(a) + f'(a)(x-a). \]

  • Given a function, \( y = f(x) \), if, instead of replacing \( x \) with \( a \), you replace \( x \) with \( a + dx \), then the differential:

    \[ dy = f'(x)dx \]

    is an approximation for the change in \( y \).

    • The actual change in \( y \), however, is:

      \[ \Delta y = f(a+dx) - f(a). \]

  • A measurement error of \( dx \) can lead to an error in the quantity of \( f(x) \). This is known as propagated error, which is estimated by:

    \[ dy \approx f'(x)dx \]

  • To estimate the relative error of a quantity ( \( q \) ) you use:\[ \frac{ \Delta q}{q}. \]

For more information on this topic, see our article on the Amount of Change Formula.

Application of Derivatives: Maxima and Minima

One of the most common applications of derivatives is finding the extreme values, or maxima and minima, of a function. Once you learn the methods of finding extreme values (also known collectively as extrema), you can apply these methods to later applications of derivatives, like creating accurate graphs and solving optimization problems.

The key terms and concepts of maxima and minima are:

  • Terms

    • Absolute extremum

      If a function, \( f \), has an absolute max or absolute min at point \( c \), then you say that the function \( f \) has an absolute extremum at \( c \).

    • Absolute max / absolute maximum

      If \( f(c) \geq f(x) \) for all \( x \) in the domain of \( f \), then you say that \( f \) has an absolute maximum at \( c \).

    • Absolute min / absolute minimum

      If \( f(c) \leq f(x) \) for all \( x \) in the domain of \( f \), then you say that \( f \) has an absolute minimum at \( c \).

    • Local extremum

      If a function, \( f \), has a local max or min at point \( c \), then you say that \( f \) has a local extremum at \( c \).

    • Local max / local maximum

      If there exists an interval, \( I \), such that \( f(c) \geq f(x) \) for all \( x \) in \( I \), you say that \( f \) has a local max at \( c \).

    • Local min / local minimum

      If there exists an interval, \( I \), such that \( f(c) \leq f(x) \) for all \( x \) in \( I \), you say that \( f \) has a local min at \( c \).

    • Critical point

      Based on the definitions above, the point \( (c, f(c)) \) is a critical point of the function \( f \).

    • Critical number

      If \( f'(c) = 0 \) or \( f'(c) \) is undefined, you say that \( c \) is a critical number of the function \( f \).

    • Extreme value theorem

      If the function \( f \) is continuous over a finite, closed interval, then \( f \) has an absolute max and an absolute min.

    • Fermat's theorem

      If a function \( f \) has a local extremum at point \( c \), then \( c \) is a critical point of \( f \).

  • Concepts

    • It is possible for a function to have:

      • both an absolute max and an absolute min,

      • just one absolute extremum, or

      • have no absolute extremum.

    • If a function has a local extremum, the point where it occurs must be a critical point.

      • However, a function does not necessarily have a local extremum at a critical point.

    • A continuous function over a closed and bounded interval has an absolute max and an absolute min.

      • Each extremum occurs at either a critical point or an endpoint of the function.

For more information on maxima and minima see Maxima and Minima Problems and Absolute Maxima and Minima.

Application of Derivatives: The Mean Value Theorem

One of the most important theorems in calculus, and an application of derivatives, is the Mean Value Theorem (sometimes abbreviated as MVT). Like the previous application, the MVT is something you will use and build on later.

The key concepts of the mean value theorem are:

  • The definition of the MVT

    If a function, \( f \), is continuous over the closed interval \( [a, b] \) and differentiable over the open interval \( (a, b) \), then there exists a point \( c \) in the open interval \( (a, b) \) such that

    \[ f'(c) = \frac{f(b)-f(a)}{b-a}. \]

  • The special case of the MVT known as Rolle's theorem

    If a function, \( f \), is continuous over the closed interval \( [a, b] \), differentiable over the open interval \( (a, b) \), and if \( f(a) = f(b) \), then there exists a point \( c \) in the open interval \( (a, b) \) such that

    \[ f'(c) = 0 \]

  • The corollaries of the mean value theorem

    1. Functions with a derivative of zero

      Let \( f \) be differentiable on an interval \( I \). If \( f'(x) = 0 \) for all \( x \) in \( I \), then \( f'(x) = \) constant for all \( x \) in \( I \).

    2. Constant difference theorem

      If the functions \( f \) and \( g \) are differentiable over an interval \( I \), and \( f'(x) = g'(x) \) for all \( x \) in \( I \), then \( f(x) = g(x) + C \) for some constant \( C \).

    3. Increasing and decreasing functions

      Let \( f \) be continuous over the closed interval \( [a, b] \) and differentiable over the open interval \( (a, b) \).

      1. If \( f'(x) > 0 \) for all \( x \) in \( (a, b) \), then \( f \) is an increasing function over \( [a, b] \).

      2. If \( f'(x) < 0 \) for all \( x \) in \( (a, b) \), then \( f \) is a decreasing function over \( [a, b] \).

Application of Derivatives: Derivatives and the Shape of a Graph

Building on the applications of derivatives to find maxima and minima and the mean value theorem, you can now determine whether a critical point of a function corresponds to a local extreme value. But what about the shape of the function's graph? Well, this application teaches you how to use the first and second derivatives of a function to determine the shape of its graph.

Key concepts of derivatives and the shape of a graph are:

  • the first derivative test

    Say a function, \( f \), is continuous over an interval \( I \) and contains a critical point, \( c \). If \( f \) is differentiable over \( I \), except possibly at \( c \), then \( f(c) \) satisfies one of the following:

    1. If \( f' \) changes sign from positive when \( x < c \) to negative when \( x > c \), then \( f(c) \) is a local max of \( f \).

    2. If \( f' \) changes sign from negative when \( x < c \) to positive when \( x > c \), then \( f(c) \) is a local min of \( f \).

    3. If \( f' \) has the same sign for \( x < c \) and \( x > c \), then \( f(c) \) is neither a local max or a local min of \( f \).

  • the Candidates Test

    This is a method for finding the absolute maximum and the absolute minimum of a continuous function that is defined over a closed interval. It consists of the following:

    1. Find all the relative extrema of the function.

    2. Evaluate the function at the extreme values of its domain.

    3. Order the results of steps 1 and 2 from least to greatest.

      • The least value is the global minimum.

      • The greatest value is the global maximum.

  • test for concavity

    If \( f \) is a function that is twice differentiable over an interval \( I \), then:

    1. If \( f''(x) > 0 \) for all \( x \) in \( I \), then \( f \) is concave up over \( I \).

    2. If \( f''(x) < 0 \) for all \( x \) in \( I \), then \( f \) is concave down over \( I \).

  • the second derivative test

    Suppose \( f'(c) = 0 \), \( f'' \) is continuous over an interval that contains \( c \).

    1. If \( f''(c) > 0 \), then \( f \) has a local min at \( c \).

    2. If \( f''(c) < 0 \), then \( f \) has a local max at \( c \).

    3. If \( f''(c) = 0 \), then the test is inconclusive.

      • You must evaluate \( f'(x) \) at a test point \( x \) to the left of \( c \) and a test point \( x \) to the right of \( c \) to determine if \( f \) has a local extremum at \( c \).

Application of Derivatives: Limits at Infinity and Asymptotes

Once you understand derivatives and the shape of a graph, you can build on that knowledge to graph a function that is defined on an unbounded domain. To accomplish this, you need to know the behavior of the function as \( x \to \pm \infty \). This application of derivatives defines limits at infinity and explains how infinite limits affect the graph of a function.

The key terms and concepts of limits at infinity and asymptotes are:

  • Terms

    • end behavior

      The behavior of the function, \( f(x) \), as \( x\to \pm \infty \).

    • horizontal asymptote

      If \( \lim_{x \to \pm \infty} f(x) = L \), then \( y = L \) is a horizontal asymptote of the function \( f(x) \).

    • infinite limit at infinity

      The function \( f(x) \) becomes larger and larger as \( x \) also becomes larger and larger.

    • limit at infinity

      The limiting value, if it exists, of a function \( f(x) \) as \( x \to \pm \infty \).

    • oblique asymptote

      The line \( y = mx + b \), if \( f(x) \) approaches it, as \( x \to \pm \infty \) is an oblique asymptote of the function \( f(x) \).

  • Concepts

    • The limit of the function \( f(x) \) is \( L \) as \( x \to \pm \infty \) if the values of \( f(x) \) get closer and closer to \( L \) as \( x \) becomes larger and larger.

    • The limit of the function \( f(x) \) is \( \infty \) as \( x \to \infty \) if \( f(x) \) becomes larger and larger as \( x \) also becomes larger and larger.

    • The limit of the function \( f(x) \) is \( - \infty \) as \( x \to \infty \) if \( f(x) < 0 \) and \( \left| f(x) \right| \) becomes larger and larger as \( x \) also becomes larger and larger.

    • For the polynomial function \( P(x) = a_{n}x^{n} + a_{n-1}x^{n-1} + \ldots + a_{1}x + a_{0} \), where \( a_{n} \neq 0 \), the end behavior is determined by the leading term: \( a_{n}x^{n} \).

      • If \( n \neq 0 \), then \( P(x) \) approaches \( \pm \infty \) at each end of the function.

    • For the rational function \( f(x) = \frac{p(x)}{q(x)} \), the end behavior is determined by the relationship between the degree of \( p(x) \) and the degree of \( q(x) \).

      • If the degree of \( p(x) \) is less than the degree of \( q(x) \), then the line \( y = 0 \) is a horizontal asymptote for the rational function.

      • If the degree of \( p(x) \) is equal to the degree of \( q(x) \), then the line \( y = \frac{a_{n}}{b_{n}} \), where \( a_{n} \) is the leading coefficient of \( p(x) \) and \( b_{n} \) is the leading coefficient of \( q(x) \), is a horizontal asymptote for the rational function.

      • If the degree of \( p(x) \) is greater than the degree of \( q(x) \), then the function \( f(x) \) approaches either \( \infty \) or \( - \infty \) at each end.

Application of Derivatives: Optimization Problems

Continuing to build on the applications of derivatives you have learned so far, optimization problems are one of the most common applications in calculus. These are defined as calculus problems where you want to solve for a maximum or minimum value of a function.

Strategy: Solving Optimization Problems

  1. Introduce all variables.
    1. If it makes sense, draw a figure and label all your variables.
  2. Determine which quantity (which of your variables from step 1) you need to maximize or minimize.
    1. Determine for what range of values of the other variables (if this can be determined at this time) you need to maximize or minimize your quantity.
  3. Write a formula for the quantity you need to maximize or minimize in terms of your variables.
    1. This formula will most likely involve more than one variable.
  4. Write any equations you need to relate the independent variables in the formula from step 3.
    1. Use these equations to write the quantity to be maximized or minimized as a function of one variable.
  5. Identify the domain of consideration for the function in step 4.
    1. Make sure you consider the physical problem to be solved.
  6. Locate the maximum or minimum value of the function from step 4.
    1. This step usually involves looking for critical points and evaluating a function at endpoints.

Application of Derivatives: L’Hôpital’s Rule

A powerful tool for evaluating limits, L’Hôpital’s Rule is yet another application of derivatives in calculus. This application uses derivatives to calculate limits that would otherwise be impossible to find. These limits are in what is called indeterminate forms.

The key terms and concepts of L’Hôpital’s Rule are:

  • Terms

    • indeterminate forms

      When evaluating a limit, the forms \[ \frac{0}{0}, \ \frac{\infty}{\infty}, \ 0 \cdot \infty, \ \infty - \infty, \ 0^{0}, \ \infty^{0}, \ \mbox{ and } 1^{\infty} \] are all considered indeterminate forms because you need to further analyze (i.e., by using L’Hôpital’s rule) whether the limit exists and, if so, what the value of the limit is.

    • L’Hôpital’s Rule

      If two functions, \( f(x) \) and \( g(x) \), are differentiable functions over an interval \( a \), except possibly at \( a \), and \[ \lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x) \] or \[ \lim_{x \to a} f(x) \mbox{ and } \lim_{x \to a} g(x) \mbox{ are infinite, } \] then \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \] assuming the limit involving \( f'(x) \) and \( g'(x) \) either exists or is \( \pm \infty \).

  • Concepts

    • You can use L’Hôpital’s rule to evaluate the limit of a quotient when it is in either of the indeterminate forms \( \frac{0}{0}, \ \frac{\infty}{\infty} \).

    • You can also use L’Hôpital’s rule on the other indeterminate forms if you can rewrite them in terms of a limit involving a quotient when it is in either of the indeterminate forms \( \frac{0}{0}, \ \frac{\infty}{\infty} \).

Application of Derivatives: Newton’s Method

In many applications of math, you need to find the zeros of functions. Unfortunately, it is usually very difficult – if not impossible – to explicitly calculate the zeros of these functions. Newton's method saves the day in these situations because it is a technique that is efficient at approximating the zeros of functions.

The key terms and concepts of Newton's method are:

  • Terms

    • iterative process

      A process in which a list of numbers like \[ x_{0}, x_{1}, x_{2}, \ldots \] is generated by beginning with a number \( x_{0} \) and then defining \[ x_{n} = F \left( x_{n-1} \right) \] for \( n \neq 1 \).

    • Newton's method

      A method for approximating the roots of \( f(x) = 0 \). It uses an initial guess of \( x_{0} \). Each subsequent approximation is defined by the equation \[ x_{n} = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}. \]

  • Concepts

    • Newton's method approximates the roots of \( f(x) = 0 \) by starting with an initial approximation of \( x_{0} \). From there, it uses tangent lines to the graph of \( f(x) \) to create a sequence of approximations \( x_1, x_2, x_3, \ldots \).

    • Failures of Newton's method:

      • This method fails when the list of numbers \( x_1, x_2, x_3, \ldots \) does not approach a finite value, or

      • when it approaches a value other than the root you are looking for.

    • Any process in which a list of numbers \( x_1, x_2, x_3, \ldots \) is generated by defining an initial number \( x_{0} \) and defining the subsequent numbers by the equation \[ x_{n} = F \left( x_{n-1} \right) \] for \( n \neq 1 \) is an iterative process.

      • Newton's method is an example of an iterative process, where the function \[ F(x) = x - \left[ \frac{f(x)}{f'(x)} \right] \] for a given function of \( f(x) \).

Application of Derivatives: Antiderivatives

Having gone through all the applications of derivatives above, now you might be wondering: what about turning the derivative process around? What if I have a function \( f(x) \) and I need to find a function whose derivative is \( f(x) \)? What application does this have?

To answer these questions, you must first define antiderivatives.

  • An antiderivative of a function \( f \) is a function whose derivative is \( f \).

One of many examples where you would be interested in an antiderivative of a function is the study of motion.

The key terms and concepts of antiderivatives are:

  • Terms

    • antiderivative

      A function \( F(x) \) such that \( F'(x) = f(x) \) for all \( x \) in the domain of \( f \) is an antiderivative of \( f \).

    • indefinite integral

      The most general antiderivative of a function \( f(x) \) is the indefinite integral of \( f \). The notation \[ \int f(x) dx \] denotes the indefinite integral of \( f(x) \).

    • initial value problem

      A problem that requires you to find a function \( y \) that satisfies the differential equation \[ \frac{dy}{dx} = f(x) \] together with the initial condition of \[ y(x_{0}) = y_{0}. \]

  • Concepts

    • If the function \( F \) is an antiderivative of another function \( f \), then every antiderivative of \( f \) is of the form \[ F(x) + C \] for some constant \( C \).

    • Solving the initial value problem \[ \frac{dy}{dx} = f(x), \mbox{ with the initial condition } y(x_{0}) = y_{0} \] requires you to:

      • first find the set of antiderivatives of \( f \) and then

      • look for the particular antiderivative that also satisfies the initial condition.

Applications of Derivatives in Engineering

The applications of derivatives in engineering is really quite vast. To touch on the subject, you must first understand that there are many kinds of engineering. To name a few;

  • Mechanical Engineering

  • Civil Engineering

  • Industrial Engineering

  • Electrical Engineering

  • Aerospace Engineering

  • Chemical Engineering

  • Computer Engineering

  • \( \vdots \)

All of these engineering fields use calculus. They all use applications of derivatives in their own way, to solve their problems.

  • An example that is common among several engineering disciplines is the use of derivatives to study the forces acting on an object. For instance,

    • Mechanical Engineers could study the forces that on a machine (or even within the machine).

    • Civil Engineers could study the forces that act on a bridge.

    • Industrial Engineers could study the forces that act on a plant.

    • Aerospace Engineers could study the forces that act on a rocket.

    • And so on.

In every case, to study the forces that act on different objects, or in different situations, the engineer needs to use applications of derivatives (and much more).

Applications of Derivatives in Economics

Even the financial sector needs to use calculus! Applications of derivatives are used in economics to determine and optimize:

  • supply and demand,

  • profit and cost, and

  • revenue and loss.

Applications of Derivatives: Examples

Launching a Rocket – Related Rates Example

Your camera is set up \( 4000ft \) from a rocket launch pad. The rocket launches, and when it reaches an altitude of \( 1500ft \) its velocity is \( 500ft/s \). What rate should your camera's angle with the ground change to allow it to keep the rocket in view as it makes its flight?

Solution:

  1. Sketch the problem.Application of Derivatives related rates example problem diagram involving watching a rocket take off and estimating height with respect to time  StudySmarter
    Your camera is \( 4000ft \) from the launch pad of a rocket. The two related rates – the angle of your camera \( (\theta) \) and the height \( (h) \) of the rocket – are changing with respect to time \( (t) \).
    • Here, \( \theta \) is the angle between your camera lens and the ground and \( h \) is the height of the rocket above the ground.
  2. Clarify what exactly you are trying to find.
    • The problem asks you to find the rate of change of your camera's angle to the ground when the rocket is \( 1500ft \) above the ground. Both of these variables are changing with respect to time.
    • This means you need to find \( \frac{d \theta}{dt} \) when \( h = 1500ft \). You also know that the velocity of the rocket at that time is \( \frac{dh}{dt} = 500ft/s \).
  3. Determine what equation relates the two quantities \( h \) and \( \theta \).
    1. Looking back at your picture in step \( 1 \), you might think about using a trigonometric equation. What relates the opposite and adjacent sides of a right triangle? The \( \tan \) function! So, you have:\[ \tan(\theta) = \frac{h}{4000} .\]
    2. Rearranging to solve for \( h \) gives:\[ h = 4000\tan(\theta). \]
  4. Differentiate this to get:\[ \frac{dh}{dt} = 4000\sec^{2}(\theta)\frac{d\theta}{dt} .\]
  5. Find \( \frac{d \theta}{dt} \) when \( h = 1500ft \).
    1. To find \( \frac{d \theta}{dt} \), you first need to find \(\sec^{2} (\theta) \). How can you do that?
      1. Going back to trig, you know that \( \sec(\theta) = \frac{\text{hypotenuse}}{\text{adjacent}} \).
      2. And, from the givens in this problem, you know that \( \text{adjacent} = 4000ft \) and \( \text{opposite} = h = 1500ft \).
      3. So, you can use the Pythagorean theorem to solve for \( \text{hypotenuse} \).\[ \begin{align}a^{2}+b^{2} &= c^{2} \\(4000)^{2}+(1500)^{2} &= (\text{hypotenuse})^{2} \\\text{hypotenuse} &= 500 \sqrt{73}ft.\end{align} \]
      4. Therefore, when \( h = 1500ft \), \( \sec^{2} ( \theta ) \) is:\[ \begin{align}\sec^{2}(\theta) &= \left( \frac{\text{hypotenuse}}{\text{adjacent}} \right)^{2} \\&= \left( \frac{500 \sqrt{73}}{4000} \right)^{2} \\&= \frac{73}{64}.\end{align} \]
    2. Plug in the values for \( \sec^{2}(\theta) \) and \( \frac{dh}{dt} \) into the function you found in step 4 and solve for \( \frac{d \theta}{dt} \).\[ \begin{align}\frac{dh}{dt} &= 4000\sec^{2}(\theta)\frac{d\theta}{dt} \\500 &= 4000 \left( \frac{73}{64} \right) \frac{d\theta}{dt} \\\frac{d\theta}{dt} &= \frac{8}{73}.\end{align} \]
  6. Therefore, the rate that your camera's angle with the ground should change to allow it to keep the rocket in view as it makes its flight is:\[ \frac{d\theta}{dt} = \frac{8}{73} rad/s. \]

Engineering Application – Optimization Example

You are an agricultural engineer, and you need to fence a rectangular area of some farmland. One side of the space is blocked by a rock wall, so you only need fencing for three sides. Given that you only have \( 1000ft \) of fencing, what are the dimensions that would allow you to fence the maximum area? What is the maximum area?

Application of Derivatives engineering optimization example problem showing the desire to maximize area given fencing on three sides of a rectangular field and a rock wall on the fourth StudySmarterDetermine the dimensions \( x \) and \( y \) that will maximize the area of the farmland using \( 1000ft \) of fencing.

Solution:

  1. Let \( x \) be the length of the sides of the farmland that run perpendicular to the rock wall, and let \( y \) be the length of the side of the farmland that runs parallel to the rock wall. Then the area of the farmland is given by the equation for the area of a rectangle:\[ A = x \cdot y. \]
  2. Since you want to find the maximum possible area given the constraint of \( 1000ft \) of fencing to go around the perimeter of the farmland, you need an equation for the perimeter of the rectangular space.
    1. Don't forget to consider that the fence only needs to go around \( 3 \) of the \( 4 \) sides! So, your constraint equation is:\[ 2x + y = 1000. \]
    2. Now, you want to solve this equation for \( y \) so that you can rewrite the area equation in terms of \( x \) only:\[ y = 1000 - 2x. \]
    3. Rewriting the area equation, you get:\[ \begin{align}A &= x \cdot y \\A &= x \cdot (1000 - 2x) \\A &= 1000x - 2x^{2}.\end{align} \]
  3. Before jumping right into maximizing the area, you need to determine what your domain is.
    1. First, you know that the lengths of the sides of your farmland must be positive, i.e., \( x \) and \( y \) can't be negative numbers.
      1. Since \( y = 1000 - 2x \), and you need \( x > 0 \) and \( y > 0 \), then when you solve for \( x \), you get:\[ x = \frac{1000 - y}{2}. \]
      2. Minimizing \( y \), i.e., if \( y = 1 \), you know that:\[ x < 500. \]
      3. So, you need to determine the maximum value of \( A(x) \) for \( x \) on the open interval of \( (0, 500) \).
        1. However, you don't know that a function necessarily has a maximum value on an open interval, but you do know that a function does have a max (and min) value on a closed interval. Therefore, you need to consider the area function \( A(x) = 1000x - 2x^{2} \) over the closed interval of \( [0, 500] \).
  4. Find the max possible area of the farmland by maximizing \( A(x) = 1000x - 2x^{2} \) over the closed interval of \( [0, 500] \).
    1. Since \( A(x) \) is a continuous function on a closed, bounded interval, you know that, by the extreme value theorem, it will have maximum and minimum values. These extreme values occur at the endpoints and any critical points.
      1. At the endpoints, you know that \( A(x) = 0 \).
      2. Since the area must be positive for all values of \( x \) in the open interval of \( (0, 500) \), the max must occur at a critical point. To find critical points, you need to take the first derivative of \( A(x) \), set it equal to zero, and solve for \( x \).\[ \begin{align}A(x) &= 1000x - 2x^{2} \\A'(x) &= 1000 - 4x \\0 &= 1000 - 4x \\x &= 250.\end{align} \]
      3. The only critical point is \( x = 250 \). Therefore, the maximum area must be when \( x = 250 \).
        1. Plugging this value into your perimeter equation, you get the \( y \)-value of this critical point:\[ \begin{align}y &= 1000 - 2x \\y &= 1000 - 2(250) \\y &= 500.\end{align} \]
        2. Therefore, to maximize the area of the farmland, \( x = 250ft \) and \( y = 500ft \). The area is \( 125000ft^{2} \). The graph below visualizes this.

Application of Derivatives engineering optimization example solution showing the maximum area occurs at the critical point of the parabola StudySmarterTo maximize the area of the farmland, you need to find the maximum value of \( A(x) = 1000x - 2x^{2} \).

Economic Application – Optimization Example

You are the Chief Financial Officer of a rental car company. You found that if you charge your customers \( p \) dollars per day to rent a car, where \( 20 < p < 100 \), the number of cars \( n \) that your company rent per day can be modeled using the linear function

\[ n(p) = 600 - 6p. \]

If the company charges \( $20 \) or less per day, they will rent all of their cars. If the company charges \( $100 \) per day or more, they won't rent any cars.

How much should you tell the owners of the company to rent the cars to maximize revenue?

Solution:

  1. Let \( p \) be the price charged per rental car per day. Let \( n \) be the number of cars your company rents per day. Let \( R \) be the revenue earned per day.
  2. Find an equation that relates all three of these variables.
    • Revenue earned per day is the number of cars rented per day times the price charged per rental car per day:\[ R = n \cdot p. \]
  3. Substitute the value for \( n \) as given in the original problem.\[ \begin{align}R &= n \cdot p \\R &= (600 - 6p)p \\R &= -6p^{2} + 600p.\end{align} \]
  4. Determine what your domain is.
    • Since you intend to tell the owners to charge between \( $20 \) and \( $100 \) per car per day, you need to find the maximum revenue for \( p \) on the closed interval of \( [20, 100] \).
  5. Find the maximum possible revenue by maximizing \( R(p) = -6p^{2} + 600p \) over the closed interval of \( [20, 100] \).
    1. Since \( R(p) \) is a continuous function over a closed, bounded interval, you know that, by the extreme value theorem, it will have maximum and minimum values. These extreme values occur at the endpoints and any critical points.
      1. Find the critical points by taking the first derivative, setting it equal to zero, and solving for \( p \).\[ \begin{align}R(p) &= -6p^{2} + 600p \\R'(p) &= -12p + 600 \\0 &= -12p + 600 \\p = 50.\end{align} \]
      2. The only critical point is \( p = 50 \). Therefore, the maximum revenue must be when \( p = 50 \).
        1. Plugging this value into your revenue equation, you get the \( R(p) \)-value of this critical point:\[ \begin{align}R(p) &= -6p^{2} + 600p \\R(50) &= -6(50)^{2} + 600(50) \\R(50) &= 15000.\end{align} \]
        2. Therefore, to maximize revenue, you should tell the owners to charge \( $50 \) per car per day. The graph below visualizes this.

Application of Derivatives economic optimization example solution showing the maximum revenue occurs at the maximum of the parabola StudySmarterTo maximize revenue, you need to balance the price charged per rental car per day against the number of cars customers will rent at that price.

Application of Derivatives – Key takeaways

Frequently Asked Questions about Application of Derivatives

Applications of derivatives in economics include (but are not limited to) marginal cost, marginal revenue, and marginal profit and how to maximize profit/revenue while minimizing cost.

You study the application of derivatives by first learning about derivatives, then applying the derivative in different situations.

You find the application of the second derivative by first finding the first derivative, then the second derivative of a function. The applications of the second derivative are:

  • determining concavity/convexity
  • finding inflection points
  • finding local extrema

You can use second derivative tests on the second derivative to find these applications.

The practical applications of derivatives are:

  • Related Rates
  • Linear Approximations and Differentials
  • Maxima and Minima
  • The Mean Value Theorem
  • Derivatives and the Shape of a Graph
  • Limits at Infinity and Asymptotes
  • Applied Optimization Problems
  • L’Hôpital’s Rule
  • Newton’s Method
  • Antiderivatives

Applications of derivatives in engineering include (but are not limited to) mechanics, kinematics, thermodynamics, electricity & magnetism, heat transfer, fluid mechanics, and aerodynamics.
Essentially, calculus, and its applications of derivatives, are the heart of engineering.

Final Application of Derivatives Quiz

Question

What is the absolute maximum of a function?

Show answer

Answer

The absolute maximum of a function is the greatest output in its range.

Show question

Question

What is the absolute minimum of a function?

Show answer

Answer

The absolute minimum of a function is the least output in its range.

Show question

Question

What is a relative maximum?

Show answer

Answer

A relative maximum of a function is an output that is greater than the outputs next to it.

Show question

Question

What is a relative minimum?

Show answer

Answer

A relative minimum of a function is an output that is less than the outputs next to it.

Show question

Question

Do all functions have an absolute maximum and an absolute minimum?

Show answer

Answer

No. A function may keep increasing or decreasing so no absolute maximum or minimum is reached.

Show question

Question

Where can you find the absolute maximum or the absolute minimum of a parabola?

Show answer

Answer

At its vertex. If the parabola opens upwards it is a minimum. If a parabola opens downwards it is a maximum.

Show question

Question

How can you identify relative minima and maxima in a graph?

Show answer

Answer

The peaks of the graph are the relative maxima. The valleys are the relative minima.

Show question

Question

What is a stationary point?

Show answer

Answer

A point where the derivative (or the slope) of a function is equal to zero.

Show question

Question

What is a critical point?

Show answer

Answer

A critical point is an x-value for which the derivative of a function is equal to 0.

Show question

Question

A critical point is also known as a:

Show answer

Answer

Stationary Point

Show question

Question

Every critical point is either a local maximum or a local minimum.

Show answer

Answer

False.

Show question

Question

Every local extremum is a critical point.

Show answer

Answer

False.

Show question

Question

The slope of a line tangent to a function at a critical point is equal to zero.

Show answer

Answer

True.

Show question

Question

A function can have more than one critical point.

Show answer

Answer

True.

Show question

Question

Does the absolute value function have any critical points?

Show answer

Answer

No.

Show question

Question

Let \( c \) be a critical point of a function \( f(x). \) What does The Second Derivative Test tells us if \( f''(c) <0 \)?

Show answer

Answer

The critical point is a local maximum.

Show question

Question

Let \( c \) be a critical point of a function \( f. \) What does The Second Derivative Test tells us if \( f''(c) >0 \)?

Show answer

Answer

The critical point is a local minimum.

Show question

Question

Let \( c \) be a critical point of a function \( f. \) What does The Second Derivative Test tells us if \( f''(c)=0 \)?


Show answer

Answer

The test is inconclusive.

Show question

Question

How do you find the critical points of a function?

Show answer

Answer

The critical points of a function can be found by doing The First Derivative Test.

Show question

Question

If The Second Derivative Test becomes inconclusive then a critical point is neither a local maximum or a local minimum.

Show answer

Answer

False.

Show question

Question

A function is said to be concave down, or concave, in an interval where:

Show answer

Answer

Its second derivative is negative.

Show question

Question

A function is said to be concave up, or convex, in an interval where:

Show answer

Answer

Its second derivative is positive.

Show question

Question

What is an inflection point?

Show answer

Answer

An x-value for which the concavity of a graph changes.

Show question

Question

A critical point of the function \( g(x)= 2x^3+x^2-1\) is \( x=0. \) Its second derivative is \( g''(x)=12x+2.\) Is the critical point a relative maximum or a relative minimum?

Show answer

Answer

Relative minimum

Show question

Question

The second derivative of a function is \( f''(x)=12x^2-2. \) Is the function concave or convex at \(x=1\)?

Show answer

Answer

Convex.

Show question

Question

The function \( h(x)= x^2+1 \) has a critical point at \( x=0. \) Is this a relative maximum or a relative minimum?

Show answer

Answer

Relative minimum.

Show question

Question

The second derivative of a function is \( g''(x)= -2x.\) Is it concave or convex at \( x=2 \)?

Show answer

Answer

Concave.

Show question

Question

What are the conditions that a function needs to meet in order to guarantee that The Candidates Test works?

Show answer

Answer

The function and its derivative need to be continuous and defined over a closed interval.

Show question

Question

Every local maximum is also a global maximum.

Show answer

Answer

False.

Show question

Question

The global maximum of a function is always a critical point.

Show answer

Answer

False.

Show question

Question

The Candidates Test can be used if the function is continuous, defined over a closed interval, but not differentiable.

Show answer

Answer

False.

Show question

Question

The Candidates Test can be used if the function is continuous, differentiable, but defined over an open interval.

Show answer

Answer

No.

Show question

Question

A function can have more than one local minimum.

Show answer

Answer

True.

Show question

Question

A function can have more than one global maximum.

Show answer

Answer

False.

Show question

Question

State the geometric definition of the Mean Value Theorem.

Show answer

Answer

The Mean Value Theorem illustrates the like between the tangent line and the secant line; for at least one point on the curve between endpoints and b, the slope of the tangent line will be equal to the slope of the secant line through the point (a, f(a)) and (b, f(b))

Show question

Question

What are the requirements to use the Mean Value Theorem?

Show answer

Answer

The function must be continuous on the closed interval and differentiable on the open interval

Show question

Question

The Mean Value Theorem states that if a car travels 140 miles in 2 hours, then at one point within the 2 hours, the car travels at exactly ______ mph.

Show answer

Answer

70

Show question

Question

State Rolle's Theorem.

Show answer

Answer

Rolle's Theorem says that if a function f is continuous on the closed interval [a, b], differentiable on the open interval (ab), and f(a) = f(b), then there is at least one value where f'(c) = 0.

Show question

Question

Rolle's Theorem is a special case of the Mean Value Theorem where...

Show answer

Answer

f(b) - f(a) = 0 or f(b) = f(a)

Show question

Question

How can we interpret Rolle's Theorem geometrically?

Show answer

Answer

If a function meets the requirements of Rolle's Theorem, then there is a point on the function between the endpoints where the tangent line is horizontal, or the slope of the tangent line is 0.

Show question

Question

What is a corollary?

Show answer

Answer

A corollary is a consequence that follows from a theorem that has already been proven.

Show question

Question

State Corollary 1 of the Mean Value Theorem.

Show answer

Answer

Assume that f is differentiable over an interval [a, b]. Corollary 1 says that if f'(x) = 0 over the entire interval  [a, b], then f(x) is a constant over [a, b].

Show question

Question

State Corollary 2 of the Mean Value Theorem.

Show answer

Answer

If functions f and g are both differentiable over the interval [ab] and f'(x)g'(x) at every point in the interval [ab], then f(x)g(x)C where is a constant.

Show question

Question

State Corollary 3 of the Mean Value Theorem.

Show answer

Answer

Let f be a function that is continuous over [ab] and differentiable over (ab). If f'(x) is positive on the entire interval (ab), then f is an increasing function over [ab]. If f'(x) is negative on the entire interval (ab), then is a decreasing function over [ab].

Show question

Question

An increasing function's derivative is....

Show answer

Answer

f'(x) > 0

Show question

Question

A decreasing function's derivative is...

Show answer

Answer

f'(x) < 0

Show question

Question

What is Newton's Method?

Show answer

Answer

Newton's Method is a recursive approximation technique for finding the root of a differentiable function when other analytical methods fail

Show question

Question

Newton's Method uses...

Show answer

Answer

tangent lines

Show question

Question

What is an example of when Newton's Method fails?

Show answer

Answer

x0 is not close enough to the root

Show question

Question

What is mathematical optimization?

Show answer

Answer

Mathematical optimization is the study of maximizing or minimizing a function subject to constraints, essentially finding the most effective and functional solution to a problem

Show question

More about Application of Derivatives
60%

of the users don't pass the Application of Derivatives quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.