StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Derivative of Logarithmic Functions

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Point Estimation
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Standard Deviation
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Survey Bias
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

Have you ever wondered how to deal with large numbers? You might have heard about a quantity that increases **exponentially**. This phrase refers to a situation that an exponential function can model. The outputs of these functions rapidly increase as their inputs increase.

**Logarithmic functions** are the inverse functions of exponential functions. Since logarithmic functions are slowly increasing functions, they can be helpful when trying to rescale large quantities.

Furthermore, we can use the properties of logarithms to our advantage in many problem-solving scenarios, particularly in calculus. For these reasons, it is essential to learn how to find the derivatives of logarithmic functions.

A logarithmic function \( f(x) = \log_{a}x \) computes the logarithm with base \( a \) of an \(x\)-value. The base \( a \) must be a non-negative number. Its derivative is defined as the limit of its rate of change as the change becomes very small.

Let \( f(x) = \log_{a}x \) be a logarithmic function. Its derivative is defined by the following limit,

\[ f'(x) = \lim_{\Delta x \rightarrow 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}.\]

In practice, you do not find the derivative of a logarithmic function using limits. The limit is found once to obtain a formula, which then is used along with some Differentiation Rules to find the derivatives of logarithmic functions.

As stated before, you can find the derivative of a logarithmic function using limits, but it is not the most practical way. Instead, you can use the following formula.

The derivative of the logarithmic function is given by \[ \frac{\mathrm{d}}{\mathrm{d}x}\log_{a}{x} = \left(\frac{1}{\ln{a}}\right) \left( \frac{1}{x} \right).\]

Here is a quick example.

Find the derivative of

\[f(x)=\log_{5}{x}.\]

Answer:

Begin by noticing that the base of the logarithmic function is \( 5.\) Knowing this, you can use the formula for the derivative of a logarithmic function, that is

\[f'(x)=\left(\frac{1}{\ln{5}} \right) \left( \frac{1}{x} \right).\]

Pretty straightforward right?

In the particular case where the base of a logarithmic function is \( e,\) that is \( f(x) = \log_{e} x,\) the function receives a special name.

If the base of a logarithm is the number \(e,\) then it is called a **Natural Logarithm.** The natural logarithmic function computes the natural logarithm of a variable, and it is denoted as

\[ f(x) = \ln{x}.\]

A natural logarithm has the base \( e,\) which means that

\[\ln{e}=1.\]

With this, the formula for the derivative of a natural logarithmic function becomes simpler, that is

\[ \begin{align} \frac{\mathrm{d}}{\mathrm{d}x}\ln{x} &= \left(\frac{1}{\ln{e}}\right) \left( \frac{1}{x} \right) \\ &= \left( \frac{1}{1} \right) \left( \frac{1}{x} \right) \\ &= \frac{1}{x}. \end{align}\]

The derivative of the natural logarithmic function is given by \[ \frac{\mathrm{d}}{\mathrm{d}x}\ln{x} =\frac{1}{x}.\]

Note that by knowing this formula, along with the properties of logarithms, you can differentiate any logarithmic function. Consider the logarithmic function

\[f(x)=\log_{a}{x}.\]

The above function can be rewritten using the properties of logarithms, that is

\[ \begin{align} f(x) &= \log_{a}{x} \\[0.5em] &= \frac{\ln{x}}{\ln{a}}. \end{align}\]

Since \( \ln{a} \) is a constant, you can use the Constant Multiple Rule to factor it out when differentiating the function, so

\[ \begin{align} \frac{\mathrm{d}f}{\mathrm{d}x} &= \frac{1}{\ln{a}}\frac{\mathrm{d}}{\mathrm{d}x}\ln{x} \\[0.5em] &= \left( \frac{1}{\ln{a}}\right) \left( \frac{1}{x} \right), \end{align} \]

which is the formula introduced at the start of the previous section.

The natural logarithmic function is the inverse function of the exponential function, this means that if

\[y=\ln{x},\]

then

\[e^y=x.\]

Next, differentiate both sides of the equation, that is

\[\frac{\mathrm{d}}{\mathrm{d}x} e^y = \frac{\mathrm{d}}{\mathrm{d}x} x\]

The left-hand side of the equation is the exponential function, so you can use the formula for the derivative of the exponential function. However, since \( y \) is a function of \(x,\) you must also use the Chain Rule.

\[ e^y\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} x\]

The right-hand side can be differentiated using the Power Rule, so

\[ e^y\frac{\mathrm{d}y}{\mathrm{d}x} = 1. \]

Finally, substitute back \(e^y=x\) and isolate the derivative of the natural logarithmic function, obtaining

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}. \]

Sometimes it is worth inspecting how to find derivatives by their definition using limits. This might be a little tricky, but this gives a bunch of experience! Let's dive into it!

Recall the definition of the derivative of the natural logarithmic function through limits, which is

\[\frac{\mathrm{d}}{\mathrm{d}x} \ln{x} = \lim_{\Delta x \rightarrow 0} \frac{\ln{(x+\Delta x)}-\ln{x}}{\Delta x}.\]

You can rewrite the expression inside the limit using the Quotient Property of Logarithms and the Power Property of Logarithms, that is

\[ \frac{\mathrm{d}}{\mathrm{d}x} \ln{x} = \lim_{\Delta x \rightarrow 0} \left[ \ln{\left( \frac{x+\Delta x}{\Delta x} \right)}^{\frac{1}{\Delta x}} \right] \]

Here comes the tricky part! Multiply by \( \frac{x}{x} \) in the exponent of the function, that is

\[ \begin{align} \frac{\mathrm{d}}{\mathrm{d}x} \ln{x} &= \lim_{\Delta x \rightarrow 0} \left[ \ln{\left( \frac{x+\Delta x}{\Delta x} \right)}^{\frac{1}{\Delta x}\frac{x}{x}} \right] \\[0.75em] &= \lim_{\Delta x \rightarrow 0} \left[ \ln{\left( \frac{x+\Delta x}{\Delta x} \right)}^{\frac{x}{\Delta x}\frac{1}{x}} \right] . \end{align} \]

Now use again the Power Property of Logarithms to move \( \frac{1}{x} \) from an exponent to a coefficient. You can take it out of the limit as it does not depend on \( \Delta x.\) You also need to simplify the fraction inside the natural logarithm, so

\[ \frac{\mathrm{d}}{\mathrm{d}x} \ln{x} = \frac{1}{x} \lim_{\Delta x \rightarrow 0} \left[ \ln{\left( 1+ \frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}} \right].\]

The next step is to use the properties of limits to switch the limit and the natural logarithm. You can do this because the natural logarithm is a continuous function.

\[ \frac{\mathrm{d}}{\mathrm{d}x} \ln{x} = \frac{1}{x} \ln{\left[ \lim_{\Delta x \rightarrow 0} \left( 1+\frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]}.\]

Next, make the substitution

\[ u=\frac{x}{\Delta x}.\]

Because \( x>0, \) \( u \) tends to positive infinity as \( \Delta x \) tends to zero. This will let you rewrite the limit as

\[ \frac{\mathrm{d}}{\mathrm{d}x} \ln{x} = \frac{1}{x} \ln{\left[ \lim_{u \rightarrow \infty} \left( 1+ \frac{1}{u}\right)^{u}\right]},\]

which is one of the definitions of \( e,\) the base of the natural logarithm, so

\[ \frac{\mathrm{d}}{\mathrm{d}x}\ln{x} = \frac{1}{x} \ln{e}.\]

Since \( e \) its the base of the natural logarithm, this last factor is equal to 1, finally obtaining

\[ \frac{\mathrm{d}}{\mathrm{d}x} \ln{x}= \frac{1}{x}.\]

It is now time to work on some examples. You can use differentiation rules and the properties of logarithms to your advantage!

Find the derivative of

\[ f(x) = \ln{x^2}.\]

Answer:

There are two ways of finding the derivative of the given function. By using the Chain Rule, and by using properties of logarithms.

- Using the Chain Rule.Begin by letting \( u(x) = x^2,\) and use the Chain Rule, that is\[ \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}u}\ln{u} \frac{\mathrm{d}u}{\mathrm{d}x}.\] You can find the derivative of \( u(x) \) using the Power Rule, that is\[ \frac{\mathrm{d}u}{\mathrm{d}x}=2x,\]and you can also write the derivative of the natural logarithmic function, so\[ \begin{align} \frac{\mathrm{d}f}{\mathrm{d}x} &= \left( \frac{1}{u} \right) (2x) \\[0.5em] &= \left( \frac{1}{x^2} \right) (2x) \\[0.5em] &= \frac{2}{x}. \end{align}\]
- Using Properties of Logarithms.Rather than using the Chain Rule, you can begin by rewriting the function using the power property of logarithms, that is\[ f(x)= 2\ln{x}.\]From here, you can use the Constant Multiple Rule and differentiate the natural logarithmic function, so\[ \begin{align} \frac{\mathrm{d}f}{\mathrm{d}x} &= (2)\left( \frac{1}{x} \right) \\ &= \frac{2}{x}. \end{align} \]

Which method do you prefer? You get the same answer either way!

You can use more properties of logarithms to your advantage. Consider now an example with the product property of logarithms.

Find the derivative of

\[ g(x) = \ln{\left(xe^x \right)}. \]

Answer:

Once again, you have two options for finding the derivative of the given function. Generally, it is adviced to use the properties of logarithms whenever you can.

Begin by using the product property of logarithms to rewrite the function, that is

\[ g(x) = \ln{x} + \ln{e^x}.\]Since the natural logarithmic function is the inverse function of the exponential function, you can further rewrite the above function, so

\[ g(x) = \ln{x} + x.\]

From here, you can differentiate each term, giving you

\[ \frac{\mathrm{d}g}{\mathrm{d}x} = \frac{1}{x} + 1.\]

Sometimes the properties of logarithms will not be able to be used in the function you are working with. In these cases, just apply any relevant differentiation rule.

Find the derivative of the function

\[ h(x) = \ln{\left(\sin{x}\right)}.\]

Answer:

Here you can let \( u(x) = \sin{x} \) and use the Chain Rule, that is

\[ \frac{\mathrm{d}h}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}u} \ln{u} \frac{\mathrm{d}u}{\mathrm{d}x}.\]

The derivative of the sine function is the cosine function, so

\[ \frac{\mathrm{d}u}{\mathrm{d}x} = \cos{x}.\]

Knowing this and the derivative of the natural logarithmic function lets you write

\[ \begin{align} \frac{\mathrm{d}h}{\mathrm{d}x} &= \left( \frac{1}{u} \right) (\cos{x}) \\[0.5em] &= \frac{\cos{x}}{\sin{x}} \\[0.5em] &= \tan{x}, \end{align}\]

where you have used the trigonometric identity

\[ \frac{\cos{x}}{\sin{x}}=\tan{x}.\]

**Logarithmic functions**are**inverse functions**of**exponential functions**of the same base.- The natural logarithmic function is the inverse of the exponential function with base \( e.\)

- The derivative of a logarithmic function is given by\[ \frac{\mathrm{d}}{\mathrm{d}x} \log_{a}{x} = \left(\frac{1}{\ln{a}}\right) \left(\frac{1}{x} \right).\]
- In case of the natural logarithmic function, the above formula simplifies to\[ \frac{\mathrm{d}}{\mathrm{d}x} \ln{x} = \frac{1}{x}.\]

- The derivative of the natural logarithmic function can be proved by using implicit differentiation and the differentiation rule for the exponential function.
- The derivative of the natural logarithmic function can also be proved using limits. It is important to know one of the definitions of \( e \) as a limit, that is \[ e = \lim_{u \rightarrow \infty} \left( 1+\frac{1}{u} \right)^u .\]

- Properties of logarithms like the
**Power Rule of Logarithms**and the**Product****Rule of Logarithms**can be used before differentiating a function in order to make it simpler.

More about Derivative of Logarithmic Functions

60%

of the users don't pass the Derivative of Logarithmic Functions quiz! Will you pass the quiz?

Start QuizBe perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.