StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

Derivatives of Polar Functions

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Area Between Two Curves
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits at Infinity and Asymptotes
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Radius of Convergence
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Separation of Variables
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Conservation of Mechanical Energy
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Elastic Strings and Springs
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Power
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Work Done by a Constant Force
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Argand Diagram
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- De Moivre's Theorem
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Distribution Function
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Degrees of Freedom
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test for Regression Slope
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Paired T-Test
- Point Estimation
- Probability
- Probability Calculations
- Probability Density Function
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Spearman's Rank Correlation Coefficient
- Standard Deviation
- Standard Error
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- T-distribution
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Variance for Binomial Distribution
- Venn Diagrams

There are many figures and shapes in nature that are better described using polar curves, like a snail's shell, the arrangement of the seeds in a sunflower, the wind patterns that lead to a tornado, and many more. We can also use polar curves to describe artificial phenomena as well!

The signature of modern times is the existence of telecommunications. Internet, television, and many more features make our lives easier. In order for telecommunications to work, scientists and engineers are tasked with sending **satellites** to the Earth's orbit. Since orbits are better described using **polar coordinates**, it is important to know how to find the **derivatives of polar functions**.

A polar function is a function defined in polar coordinates. Just like when working with Cartesian coordinates (also known as rectangular coordinates) you write functions as

\[ y = f(x),\]

in polar coordinates, you write functions as

\[ r = f(\theta).\]

Consider the example of an Archimedean spiral described by

\[ r = 3\theta,\]

its graph is given as follows.

You might be tempted to find its derivative the way you are used to using rectangular coordinates, so you would get

\[ \frac{\mathrm{d}r}{\mathrm{d}\theta} = 3.\]

The above expression is the derivative of \( r \) with respect to \( \theta,\) which is telling you how the distance from the origin to a point on the polar curve changes as \( \theta\) is changing. Since the distance between two consecutive segments of an Archimedean spiral is constant, you can expect that this derivative is a constant as well.

While the derivative of \( r \) with respect to \( \theta \) represents the change of \( r \) with respect to a change of \( \theta\), it does not represent the slope to a line tangent to the polar curve.

If you wanted to find a line tangent to a polar curve, you will need to use a special formula that involves derivatives using polar coordinates.

The derivative of a function written as

\[ y = f(x) \]

can help you find a line tangent to the curve \( f(x)\), so you can use this idea for finding the line tangent to a polar curve. In this case, you need to find the derivative

\[ \frac{\mathrm{d}y}{\mathrm{d}x}\]

in terms of polar coordinates \( r\) and \( \theta\). In order to do so, you can use the following formula.

Let \( r= f(\theta) \) be a polar function, then its derivative is given by

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{ \frac{\mathrm{d}r}{\mathrm{d}\theta} \sin{\theta} + r \, \cos{\theta}}{\frac{\mathrm{d}r}{\mathrm{d}\theta} \cos{\theta} - r \, \sin{\theta}}.\]

Since \( r=f(\theta)\), you might also find this formula written in terms of \( f\) and using prime notation, that is

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(\theta) \cdot \sin{\theta} + f(\theta) \cdot \cos{\theta}}{f'(\theta) \cdot \cos{\theta}-f(\theta) \cdot \sin{\theta}}.\]

You can evaluate this derivative for any value of \( \theta \), which will give you the slope of a line tangent to the curve at the point defined by \( f(\theta) \).

Please note that in the above formula it is possible to have \( 0\) in the denominator. While you are usually told to avoid this scenario, in this context this means that the line tangent to the curve is **vertical**.

The formula used to find the derivative of a polar function might look intimidating, so let's break it down into steps.

- Find the derivative \( f'(\theta) \) using any relevant differentiation rules.
- Use the formula for the derivative of a polar function.
- Substitute \( f(\theta) \) and \( f'(\theta) \) into the formula for the derivative of a polar function.
- Simplify the resulting expression.

Steps are always better understood with examples. Here is one!

Find the derivative of the Archimedean spiral described by

\[ f(\theta) = 3 \theta.\]

**Solution:**

Here you can follow the steps introduced in this section to find the derivative of the Archimedean spiral shown at the start of the article.

1. *Find the derivative \( f'(\theta) \) using any relevant differentiation rules.*

Remember that the derivative involved in this step is the usual derivative of \( f(\theta) \) with respect to \( \theta\), that is

\[ f'(\theta) = \frac{\mathrm{d}f}{\mathrm{d}\theta},\]

so you can find it with help of the Power Rule, giving you

\[ f'(\theta) = 3. \]

2. *Use the formula for the derivative of a polar function.*

Now you can use the formula for the derivative of a polar function,

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(\theta) \cdot \sin{\theta} + f(\theta) \cdot \cos{\theta}}{f'(\theta) \cdot \cos{\theta}-f(\theta) \cdot \sin{\theta}}.\]

3. *Substitute \( f(\theta) \) and \( f'(\theta) \) into the formula for the derivative of a polar function.*

You were given \( f(\theta) = 3\theta \) and you found that \( f'(\theta)=3\), so substitute these values into the formula for the derivative of a polar function, that is

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(3)\sin{\theta}+(3\theta)\cos{\theta}}{(3)\cos{\theta}-(3\theta)\sin{\theta}}.\]

4. *Simplify the resulting expression.*

Finally, simplify the derivative by factoring out \( 3 \) in both the numerator and denominator, that is

\[ \begin{align} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3\left(\sin{\theta}+\theta\cos{\theta}\right)}{3\left(\cos{\theta}-\theta\sin{\theta}\right)} \\ &= \frac{\cancel{3}\left(\sin{\theta}+\theta\cos{\theta}\right)}{\cancel{3}\left(\cos{\theta}-\theta\sin{\theta}\right)} \\ &= \frac{\sin{\theta}+\theta\cos{\theta}}{\cos{\theta}-\theta\sin{\theta}} . \end{align}\]

The resulting derivative can be evaluated at any value of \( \theta\), which will give you the slope of the line tangent to the spiral. For example, you can use \( \theta = \frac{\pi}{2}\) and obtain

\[\begin{align} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\sin{\frac{\pi}{2}} +\frac{\pi}{2}\cos{\frac{\pi}{2}} }{\cos{\frac{\pi}{2}}-\frac{\pi}{2}\sin{\frac{\pi}{2}}} \\ &= \frac{1+\frac{\pi}{2}(0)}{0-\frac{\pi}{2}(1)} \\ &= \frac{1}{-\frac{\pi}{2}} \\ &= -\frac{2}{\pi}. \end{align}\]

Since \( r= f(\theta), \) you can find the point on the curve when \( \theta=\frac{\pi}{2} \) by substituting this value of \( \theta \) in \( f,\) that is

\[ \begin{align} r &= f \left( \frac{\pi}{2} \right) \\ &= 3\cdot\frac{\pi}{2} \\&= \frac{3\pi}{2}, \end{align} \]

which gives you the distance from the origin to the point.

Note that, since you found the slope to be negative, the line is a decreasing function.

As mentioned earlier, when finding the derivatives of polar functions you can find either

\[ f'(\theta)=\frac{\mathrm{d}r}{\mathrm{d}\theta}\]

in a direct way, or you can also find

\[ \frac{\mathrm{d}y}{\mathrm{d}x}\]

using the formula introduced in the previous chapter to relate it to the line tangent to the polar curve. Note that to use the formula for

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(\theta) \cdot \sin{\theta} + f(\theta) \cdot \cos{\theta}}{f'(\theta) \cdot \cos{\theta}-f(\theta) \cdot \sin{\theta}},\]

you actually need to find \( f'(\theta) \).

Usually, the **derivative of a polar function** refers to the **lines tangent to a polar curve**, so you should use the above formula to compute them.

A common way to describe the motion of things is by means of polar coordinates. In this case, the coordinates \( r \) and \( \theta \) become functions of time, which is usually represented using the letter \( t\). This means that, given any instant of time, you can find the coordinates of an object in terms of its polar coordinates, that is

\[ r = r(t), \]

and

\[ \theta = \theta (t). \]

This way you can find the derivatives of \( r \) and \( \theta \) with respect to time, which receive special names.

The \( r \) coordinate is usually known as the **radial coordinate**, and its derivative is known as the **radial speed**.

The **radial speed** of a particle in motion is defined as \[ v = \frac{\mathrm{d}r}{\mathrm{d}t}.\] The radial speed of an object can be seen as how fast such an object is changing its distance relative to the center of a coordinate system.

And what about the **angular coordinate** \( \theta \)?

The **angular speed** of a particle in motion is defined as \[ \omega = \frac{\mathrm{d}\theta}{\mathrm{d}t}.\] The angular speed of an object can be seen as how fast such object is changing its orientation with respect to a fixed axis of a coordinate system, which is usually the \(x-\) axis.

You might come up with the terms** radial velocity** and **angular velocity. **These quantities are the corresponding** vector quantity** for each speed.

The motion of a particle described in polar coordinates is given by

\[ r(t) = t^2-2t\]

and

\[ \theta(t) = \sin{(2\pi\,t)}.\]

Find its radial and angular speeds.

**Solution:**

You can obtain the radial speed of the particle by finding the derivative of \( r(t)\), which can be done with the help of the Power Rule, that is

\[ \begin{align} v &= \frac{\mathrm{d}r}{\mathrm{d}t} \\ &= 2t-2. \end{align} \]

For the angular speed, you instead find the derivative of \( \theta(t)\), where you have to use the fact that the derivative of the sine function is the cosine function. Do not forget to use the Chain Rule as well! This will give you

\[ \begin{align} \omega &= \frac{\mathrm{d}\theta}{\mathrm{d}t} \\ &= 2\pi\cos{(2\pi\,t)}. \end{align}\]

Simple, isn't it?

Here you can practice finding the derivatives of polar functions with some examples.

Consider the limaçon described by

\[ f( \theta ) = 2+3\sin{\theta}. \]

Find the derivative of this polar curve.

**Solution: **

1. *Find the derivative \( f'(\theta) \) using any relevant differentiation rules.*

Since the derivative of the sine function is the cosine function, you can write

\[ f'(\theta) = 3\cos{\theta}. \]

2. *Use the formula for the derivative of a polar function.*

Next, you need to use the formula

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(\theta) \cdot \sin{\theta} + f(\theta) \cdot \cos{\theta}}{f'(\theta) \cdot \cos{\theta}-f(\theta) \cdot \sin{\theta}}.\]

3. *Substitute \( f(\theta) \) and \( f'(\theta) \) into the formula for the derivative of a polar function.*

This step is rather straightforward, doing so will give you\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(3\cos{\theta})\sin{\theta} + (2+3\sin{\theta})\cos{\theta}}{(3\cos{\theta}) \cos{\theta}-(2+3\sin{\theta})\sin{\theta}}.\]

4. *Simplify the resulting expression.*

This step usually involves plenty of algebra.

\[ \begin{align} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{(3\cos{\theta})\sin{\theta} + (2+3\sin{\theta})\cos{\theta}}{(3\cos{\theta}) \cos{\theta}-(2+3\sin{\theta})\sin{\theta}} \\ &= \frac{3(\cos{\theta})(\sin{\theta})+2\cos{\theta}+3(\sin{\theta})(\cos{\theta})}{3\cos^2{\theta}-2\sin{\theta}-3\sin^2{\theta}} \\ &= \frac{6(\sin{\theta})(\cos{\theta})+2\cos{\theta}}{3\cos^2{\theta}-3\sin^2{\theta}-2\sin{\theta}}. \end{align}\]

This is as good as it gets. Usually these derivatives will look this way.

Maybe the derivative of a rose curve looks nicer.

Consider the rose curve described by

\[ f(\theta) = 3\cos{(2\theta)}.\]

Find the derivative of this polar curve.

**Solution:**

1. *Find the derivative \( f'(\theta) \) using any relevant differentiation rules.*

First find the derivative of \( f\) using the fact that the derivative of the cosine function is the negative of the sine function, that is

\[ f'(\theta) = -6\sin{(2\theta)}.\]

2. *Use the formula for the derivative of a polar function.*

As usual, use the formula

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(\theta) \cdot \sin{\theta} + f(\theta) \cdot \cos{\theta}}{f'(\theta) \cdot \cos{\theta}-f(\theta) \cdot \sin{\theta}}\]

to find the derivative of the polar curve.

3.

Before substituting anything, you should try using some trigonometric identities to rewrite \( f(\theta)\) and its derivative. You can use double-angle identities and find that

\[\begin{align} f(\theta) &= 3\cos{(2\theta)} \\ &= 3(\cos^2{\theta}-\sin^2{\theta}) \\ &= 3\cos^2{\theta}-3\sin^2{\theta}\end{align}\]

and

\[\begin{align} f'(\theta) &= -6\sin{(2\theta)} \\ &= -6(2\sin{\theta}\,\cos{\theta}) \\ &= -12\sin{\theta}\,\cos{\theta}. \end{align}\]

Now you can substitute the above expressions into the formula for the derivative of a polar curve, so

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(-12\sin{\theta}\,\cos{\theta})(\sin{\theta})+(3\cos^2{\theta}-3\sin^2{\theta})(\cos{\theta})}{(-12\sin{\theta}\,\cos{\theta})(\cos{\theta})-(3\cos^2{\theta}-3\sin^2{\theta})(\sin{\theta})}. \]

4. *Simplify the resulting expression.*

Finally, simplify the above expression as much as you can, so

\[ \begin{align} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{(-12\sin{\theta}\,\cos{\theta})(\sin{\theta})+(3\cos^2{\theta}-3\sin^2{\theta})(\cos{\theta})}{(-12\sin{\theta}\,\cos{\theta})(\cos{\theta})-(3\cos^2{\theta}-3\sin^2{\theta})(\sin{\theta})} \\ &= \frac{-12\sin^2{\theta}\,\cos{\theta}+3\cos^3{\theta}-3\sin^2{\theta}\,\cos{\theta}} {-12\sin{\theta}\,\cos^2{\theta}-3\sin{\theta}\,\cos^2{\theta}+3\sin^3{\theta}} \\ &= \frac{-15\sin^2{\theta}\,\cos{\theta}+3\cos^3{\theta}}{-15\sin{\theta}\,\cos^2{\theta}+3\sin^3{\theta}}. \end{align}\]

From here, you can factor \(-3\) out of both the numerator and denominator, giving you

\[ \begin{align} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{\cancel{(-3)}(5\sin^2{\theta}\,\cos{\theta}-\cos^3{\theta})}{\cancel{(-3)}(5\sin{\theta}\,\cos^2{\theta} -\sin^3{\theta}) } \\ &= \frac{5\sin^2{\theta}\,\cos{\theta}-\cos^3{\theta}}{5\sin{\theta}\,\cos^2{\theta} -\sin^3{\theta} }. \end{align}\]

Remember that if you find that the slope of a line is infinity, it means that it is a vertical line.

Show that the line tangent to

\[ f(\theta) = 3\]

at the point when \( \theta = 0 \) is vertical.

**Solution:**

The given polar curve is a curve with constant \(r\), which is a circumference. The radius of this circumference is equal to \(3\).

In order to find the line tangent to the curve at the requested point, you first need to find its derivative.

1. *Find the derivative \( f'(\theta) \) using any relevant differentiation rules.*

Since the given function is a constant function, its derivative is equal to zero, that is

\[ f'(\theta) = 0. \]

2. *Use the formula for the derivative of a polar function.*

Next, you will need to use the formula

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(\theta) \cdot \sin{\theta} + f(\theta) \cdot \cos{\theta}}{f'(\theta) \cdot \cos{\theta}-f(\theta) \cdot \sin{\theta}}\]

to find the derivative of the given polar curve.

This time the function and its derivative are constants, so the substitution is straightforward. Doing so will yield you

\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(0)(\sin{\theta}) + (3)(\cos{\theta})}{(0)(\cos{\theta})-(3)(\sin{\theta})}.\]

4. *Simplify the resulting expression.*

You will find that simplifying expressions before evaluating them is very useful. In this case, the above expression simplifies as

\[ \begin{align} \frac{\mathrm{d}y}{\mathrm{d}x} &= \frac{3\cos{\theta} }{-3\sin{\theta}} \\ &= -\cot{\theta}. \end{align}\]

Now that you found the derivative of the polar curve, you can substitute \( \theta=0,\) however you will find an issue here

\[ \cot{0} = \infty. \]

Do not worry! Since the above expression gives you the slope of the tangent line, this actually proves what you were asked, as the slope of a vertical line is infinity.

- Functions in polar coordinates are usually written as\[ r =f(\theta), \] where \( r \) is the distance from the origin to a point of the polar curve.
- You can find the derivative \( f'(\theta) \) the same way you find the derivative of any other function, that is,\[ f'(\theta) = \frac{\mathrm{d}f}{\mathrm{d}\theta}.\]However this derivative
**does not**describe the slope of a line tangent to a point of the polar function. - Let \( r= f(\theta) \) be a polar function, then its derivative, also known as the derivative of the polar curve, is given by\[ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(\theta) \cdot \sin{\theta} + f(\theta) \cdot \cos{\theta}}{f'(\theta) \cdot \cos{\theta}-f(\theta) \cdot \sin{\theta}}.\]
- You can use the derivative \( \frac{\mathrm{d}y}{\mathrm{d}x} \) to find the slope of a line tangent to a point of a polar function.
- Note that the usual derivative \( f'(\theta)\) is involved in the formula for the derivative of a polar curve.

The derivative of a polar curve usually refers to the slope of a line tangent to the polar curve.

More about Derivatives of Polar Functions

60%

of the users don't pass the Derivatives of Polar Functions quiz! Will you pass the quiz?

Start QuizBe perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Over 10 million students from across the world are already learning smarter.

Get Started for Free