StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

Determining Volumes by Slicing

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Area Between Two Curves
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits at Infinity and Asymptotes
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Radius of Convergence
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Separation of Variables
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Conservation of Mechanical Energy
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Elastic Strings and Springs
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Power
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Work Done by a Constant Force
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Argand Diagram
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- De Moivre's Theorem
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Distribution Function
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Degrees of Freedom
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test for Regression Slope
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Paired T-Test
- Point Estimation
- Probability
- Probability Calculations
- Probability Density Function
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Spearman's Rank Correlation Coefficient
- Standard Deviation
- Standard Error
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- T-distribution
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Variance for Binomial Distribution
- Venn Diagrams

Ever tried home-made potato chips? You can try doing some! All you need is a knife and a deep frier (and of course, a potato, salt, and oil). What characterizes potato chips from french fries is the **shape **of the cut. For a potato chip you need to do thin slices, so they can fry properly.

After slicing the potato you can begin to think backwards. Can you put all the slices back together to make the potato again? Maybe this is a little hard to do because, once sliced, you cannot reconstitute back the potato. However, the **volume** of the slices is equal to the volume of the potato before you sliced it.

The idea of slicing is very useful to find volumes because if the slices are very thin, you can take advantage of formulas for finding **areas **instead, and then reconstitute back the solid by means of **integration**.

You have probably found before formulas for finding the volumes of some geometric bodies, for example if you are given a cone, you can find its volume using the formula

\[ V_{\text{cone}} = \frac{1}{3}\pi r^2 h,\]

or maybe you are given a cylinder, whose volume can be found with

\[ V_{\text{cylinder}} = \pi r^2 h.\]

There is also the volume of a pyramid, which regardless of the shape of its base, you can find its volume with

\[ V_{\text{pyramid}} = \frac{1}{3}A h.\]

But where do all these formulas come from? Why are there \( \frac{1}{3} \) involved?

The answer to this question becomes easier if you **slice **any of these solids, obtaining a **cross-section** of the body.

A **cross-section** of a body is a view that shows how the body would look if you were to make a cut across it.

Consider the case of a cone. Here you can see a cross-section obtained by slicing the cone halfway through its height. The slice is done so it is parallel to the base of the cone.

This is particularly useful because the formula for finding the area of a circle is

\[ A_{\text{circle}} = \pi r^2, \]

so you can add together all the cross-sections of the cone by means of **integration** to obtain the volume of a cone.

To find volumes by slicing, consider a simpler example: the volume of a rectangular prism.

Next, **slice **the prism to obtain a cross-section that is parallel to any of its faces, for example a cross-section parallel to its base.

You can find the area of a rectangle by using the formula

\[ A_{\text{rectangle}} = \ell w.\]

To find the volume of the rectangular prism, imagine you stack all the rectangular slices of the prism. Since all slices are equal, you just multiply the area of the rectangular prism (let's just call it \( A \) for simplicity) by the height of the prism, that is

\[ \begin{align} V_{\text{prism}} &= A h \\ &= \ell w h. \end{align} \]

You can obtain the same formula if stacking cross-sections that are parallel to any other side of the prism!

You can imagine this step as if dragging the area of a cross-section of the prism from one side to another

A similar idea applies to other geometric bodies, like cylinders.

The volume of a cylinder can be found by multiplying the area of the base by its height, so

\[ \begin{align} V_{\text{cylinder}} &= A h \\ &= \pi r^2 h. \end{align}\]

But what happens if the slices are not equal? You need to **integrate**!

So far you have seen that if all the areas of a cross-section of a solid are equal, you can just multiply by the length of the corresponding transversal side to obtain the volume of a solid, like in the case of the rectangular prism or with the cylinder.

Now consider the case of a cone. Suppose that the base of this cone is equal to \(R,\) and its height is \( h.\) If you take cross-sections parallel to its base, you will find out that these do not have the same area.

For illustrative purposes, place the cone along the \(x-\)axis with its tip in the origin. This way you can find the radius of each cross-section as a function of \(x.\)

In fact, the cross-sections are all circles with different radii, which can be found by using similar triangles, that is

\[ \frac{R}{h} =\frac{r}{x},\]

so

\[ r = \frac{R}{h}x.\]

The function

\[ r(x) = \frac{R}{h}x\]

gives you the radius of each cross-section in terms of its position relative to the tip of the cone, so the area of a cross-section is

\[ \begin{align} A(x) &= \pi \left( r(x) \right) ^2 \\ &= \pi \left( \frac{R}{h}x \right)^2 \\ &= \frac{\pi R^2}{h^2}x^2. \end{align} \]

Now that you know a function for the area of each cross-section, you can add them together by means of integration. The integration limits are \(a=0\) since you are starting from the tip of the cone, and \( b=h\) because the cross-sections align all the way up to the base, so

\[ \begin{align} V &= \int_0^h A(x) \,\mathrm{d}x \\ &= \int_0^h \frac{\pi R^2}{h^2}x^2\,\mathrm{d}x \\ &= \frac{\pi R^2}{h^2}\int_0^h x^2\,\mathrm{d}x. \end{align}\]

You can solve the resulting definite integral using the Power Rule and the Fundamental Theorem of Calculus, that is

\[ \begin{align} \int_0^h x^2 \, \mathrm{d}x &= \left( \frac{1}{3}(h)^3 \right) - \left( \frac{1}{3}(0)^3\right) \\ &= \frac{1}{3}h^3. \end{align} \]

By plugging back the above definite integral into the formula for the volume, you obtain

\[ \begin{align} V &= \left( \frac{\pi R^2}{h^2} \right) \left(\frac{1}{3}h^3 \right) \\ &= \frac{\pi R^2h^3}{3h^2} \\ &= \frac{1}{3}\pi R^2 h,\end{align}\]

which is the formula for the volume of a cone,

\[V_{\text{cone}} = \frac{1}{3}\pi R^2h.\]

So that's where the \( \frac{1}{3} \) comes from! You can find formulas for more solids by following steps similar to above.

Another way of finding volumes of solids is by rotation of two-dimensional figures around a revolution axis. The solids found this way are known as Solids of Revolution, and their volume are found using different methods depending on the solid.

Check out our articles about the Disk Method and the Washer Method for more information on this subject!

There are more formulas that can be determined by slicing!

Find the formula for the volume of a square pyramid with side \( \ell \) and height \( h.\)

Answer:

The base of a square pyramid, as the name suggests, is square, so its area can be found using the formula for the area of a square, that is

\[ A_{\text{square}}=\ell ^2.\]

The cross-sections parallel to the base of the pyramid are smaller squares. You can use similar triangles to find that the length \( s \) of the sides of these squares are given by

\[ s(x) = \frac{\ell}{h}x. \]

Knowing this, the area of each cross-section becomes

\[ \begin{align} A(x) &= \left( s(x) \right)^2 \\ &= \left( \frac{\ell}{h}x\right)^2 \\ &= \frac{\ell^2}{h^2}x^2. \end{align} \]

By integrating this area along the \(x-\)axis from \( 0 \) to \( h, \) you can find the volume of the pyramid, so

\[ \begin{align} V &= \int_0^h A(x) \, \mathrm{d}x \\ &= \int_0^h \frac{\ell^2}{h^2} x^2 \, \mathrm{d}x \\ &= \frac{\ell^2}{h^2} \int_0^h x^2 \, \mathrm{d}x. \end{align}\]

The resulting definite integral is the same as the previous example of the cone, you can find it with the help of the Power Rule and the Fundamental Theorem of Calculus, giving you

\[ \int_0^h x^2 \, \mathrm{d}x = \frac{1}{3}h^3.\]

By plugging this integral back into the volume formula, you obtain

\[ \begin{align} V &= \left( \frac{\ell^2}{h^2} \right) \left( \frac{1}{3}h^3 \right) \\&= \frac{\ell^2h^3}{3h^2} \\ &= \frac{1}{3}\ell^2h. \end{align} \]

Note that the area of the base is \( A=\ell^2,\) so you can substitute this into the above formula and obtain

\[ V=\frac{1}{3}Ah,\]

which might look more familiar.

Ever wondered why the formula for the volume of a sphere has \( \frac{4}{3} \) in it?

Find the formula for the volume of a sphere with radius \( R.\)

Answer:

Begin by imagining you place the sphere in the origin of the coordinate system. The cross-sections of a sphere are all circles, so you can find the area of a cross-section of the sphere using

\[ A(x) = \pi \left(r(x)\right)^2.\]

You need to find the radius of the sphere depending on its position relative to the origin. In order to do so, focus on the cross-section of the sphere.

The radius of a cross-section satisfies the equation

\[x^2+r^2=R^2,\]

from where you can obtain

\[r^2=R^2-x^2,\]

so

\[\left( r(x) \right) ^2 = R^2-x^2.\]

This means that the area of a cross-section is given by

\[ A(x) = \pi (R^2-x^2),\]

so you can integrate to find the volume of the sphere, that is

\[ V(x) = \int_{-R}^R \pi \left(R^2-x^2\right) \, \mathrm{d}x\]

The integral can be done with the Power Rule. Do not forget that in this case, R is a constant!

\[ \begin{align} V(x) &= \int_{-R}^R \pi \left( R^2-x^2\right) \, \mathrm{d}x \\ &= \pi \left[ \left( R^2(R)-\frac{1}{3}(R)^3 \right) - \left( R^2(-R) -\frac{1}{3}(-R)^3 \right) \right] \\ &= \pi \left[ \left(R^3-\frac{1}{3}R^3 \right)-\left( -R^3+\frac{1}{3}R^3 \right)\right]\\ &=\pi \left[ \frac{2}{3}R^3+\frac{2}{3}R^3\right] \\ &= \frac{4}{3}\pi R^3. \end{align}\]

And that is how you obtain the formula for the volume of a sphere!

- A
**cross-section**of a body is a view that show how the body would look if you were to make a cut across it. - The idea behind determining volumes by slicing is to find the areas of the slices of a body, and
**integrate**them to obtain their volume.- In order to do so, you obtain slices, or cross-sections, aligned along the axis of integration.

- The formulas for many geometrical bodies can be found by slicing, like the volumes of pyramids, cones, and spheres.

- Find a cross-section of the body that has a regular shape, so you can find its area.
- Obtain an expression for the area of the cross-section.
- Integrate along an axis perpendicular to the planes that contain the cross-sections.

More about Determining Volumes by Slicing

60%

of the users don't pass the Determining Volumes by Slicing quiz! Will you pass the quiz?

Start QuizBe perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Over 10 million students from across the world are already learning smarter.

Get Started for Free