StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Evaluating a Definite Integral

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Point Estimation
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Standard Deviation
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

You might have seen how to approximate the area below curves using different methods. The most common way of approximating areas is by using rectangles. This is what we know as a Riemann sum.

But what about the **exact** area below a curve?

Definite Integrals are closely related to the area below a curve, so in this article we will explore how to evaluate definite integrals.

For more information about the area between curves and how to find it, see the article Area Between Two Curves.

To **evaluate **a definite integral means to find its **value**. This value is related to the area under the curve.

You might have noticed that an indefinite integral just has the integral symbol, \( \int,\) and after evaluating it you still have variables and an integration constant, for example\[\int x^2 \mathrm{d}x = \frac{1}{3}x^3+C.\] Definite integrals, instead, have integration limits, like \( \int_1^3,\) the end result is a number, and there are no integration constants, like

\[ \int_1^3 x^2 \mathrm{d}x = \frac{26}{3}\]

But how to evaluate a definite integral? There are many ways. The most common are:

By taking the limit of a Riemann Sum.

By substituting values using the Fundamental Theorem of Calculus.

From a graph by using a geometric formula.

Let's address each one at a time.

Begin by recalling the definition of a definite integral.

Let \( f(x) \) be a function defined in the interval \( [a,b]. \) Assuming the limit exists, the **definite integral** of \( f(x) \) from \( a \)** **to \( b \)** **is denoted as

\[ \int_a^b f(x)\,\mathrm{d}x, \]

and is defined as

\[ \int_a^b f(x)\,\mathrm{d}x=\lim_{N\rightarrow \infty} \sum_{i=1}^{N} f(x_i^*)\Delta x, \]

where

\[ \Delta x = \frac{b-a}{N}\]

and \(x_i^* \) is any point within a regular partition of the interval.

The values \( a \) and \( b \) are known as the **limits of integration**.

For more information and examples on setting up integrals, see the article Definite Integrals.

This means that a definite integral is defined as the limit of a Riemann sum as the number of subintervals tends to infinity. Please take a look at our Forming Riemann Sums article if you need a refresher on the subject!

Here is an example of how to evaluate a definite integral using limits.

Evaluate

\[ \int_{0}^{5} x^2\,\mathrm{d}x \]

using the definition of definite integral.

Solution:

In this case, the function is \( f(x)=x^2 \) and the limits of integration are \( a=0 \) and \( b=5.\) Knowing this, you can find \( \Delta x \) :

\[ \begin{align} \Delta x &= \frac{b-a}{N} \\ &= \frac{5-0}{N} \\ &= \frac{5}{N}. \end{align} \]

With this, you can use the definition of definite integral, so

\[ \int_0^5 x^2\,\mathrm{d}x = \lim_{N\rightarrow \infty} \left[ \sum_{i=1}^{N}\left( x_i^* \right)^2 \left( \frac{5}{N}\right) \right] .\]

You can use any point within each subinterval to evaluate the Riemann sum. For illustrative purposes, a right-endpoint approximation will be used. This will let you write

\[ \begin{align} x_i^* &= a+i\Delta x \\ &= i\frac{5}{N}, \end{align} \]

which can be substituted back into the definite integral

\[ \int_0^5 x^2\,\mathrm{d}x = \lim_{N\rightarrow \infty} \left[ \sum_{i=1}^{N}\left( i\frac{5}{N} \right)^2 \left( \frac{5}{N}\right) \right] .\]

To evaluate the above limit begin by rewriting the expression to simplify it a little:

\[\begin{align} \int_0^5 x^2\,\mathrm{d}x &= \lim_{N\rightarrow \infty} \left[ \sum_{i=1}^{N}\left( i\frac{5}{N} \right)^2 \left( \frac{5}{N}\right) \right] \\ &= \lim_{N\rightarrow \infty} \left[ \left( \frac{5}{N}\right)^3 \sum_{i=1}^{N}i^2 \right]. \end{align}\]

You can use the formula

\[\sum_{i=1}^{N}i^2=\frac{N(N+1)(2N+1)}{6}\]

to evaluate the sum, so

\[ \int_0^5 x^2 \,\mathrm{d}x = \lim_{N\rightarrow \infty} \left[ \left(\frac{5}{N}\right)^3 \left(\frac{N(N+1)(2N+1)}{6}\right) \right]. \]

The above expression can be rewritten by expanding the product, that is

\[ \int_0^5 x^2\,\mathrm{d}x = \lim_{N\rightarrow \infty} \left( \frac{125}{3}+\frac{125}{2N}+\frac{125}{6N^2} \right). \]

Finally, evaluate the above limit to find

\[ \int_0^5 x^2 \, \mathrm{d}x = \frac{125}{3}.\]

This result means that the area below \(f(x)=x^2\) in the interval \( [0,5] \) is equal to \( \frac{125}{3}.\)

You might have noticed that the above method is not the most practical one. Luckily, there is an easier way.

Another way of evaluating definite integrals is to use the evaluation part of the Fundamental Theorem of Calculus.

Let \(f(x)\) be a function that is integrable on the interval \( [a,b], \) and let \( F(x) \) be an antiderivative of \(f(x).\) The evaluation part of the Fundamental Theorem of Calculus states that

\[ \int_a^b f(x)\,\mathrm{d}x = F(b)-F(a).\]

This way you only need to find the antiderivative of the function and substitute some values.

Evaluate

\[\int_0^5 x^2 \, \mathrm{d}x \]

using the Fundamental Theorem of Calculus.

Answer:

Begin by finding the antiderivative of \(x^2.\) This can be done using the Power Rule, so

\[\int x^2 \, \mathrm{d}x = \frac{1}{3}x^3+C.\]

Next, you need to evaluate this antiderivative at both integration limits and subtract them. No matter what value of \(C\) you choose, it will cancel out when doing the subtraction, so there is no need to include it when using the Fundamental Theorem of Calculus. That means the integral is

\[ \begin{align} \int_0^5 x^2 \, \mathrm{d}x &= \left( \frac{1}{3}(5)^3 \right) - \left( \frac{1}{3}(0)^3 \right) \\ &= \frac{125}{3}. \end{align} \]

Note that you got the same answer using a more straightforward method!

So far you have been using the definite integrals to find the area below a curve.

Let \(f(x)\) be a function that is non-negative and integrable on the interval \( [a,b].\) The **area below the curve** is given by its definite integral

\[A=\int_a^b f(x)\,\mathrm{d}x.\]

Some curves relate perfectly to geometric figures, so you can do the other way around! You can use the formulas for finding the area of geometric figures to find the value of definite integrals!

Evaluate the definite integral

\[ \int_0^4 2x\,\mathrm{d}x.\]

Answer:

In this case you are trying to find the area below the linear function \( f(x)=2x.\) Begin by taking a look at its graph.

Note that the area below the function is a triangle with base 4 and height 8.

Therefore, you can use the formula for the area of a triangle to find this area, so

\[ \begin{align} A &= \frac{bh}{2} \\ &= \frac{4(8)}{2} \\ &= 16. \end{align} \]

This means that the value of the definite integral is 16.

\[ \int_0^4 2x \,\mathrm{d}x = 16 \]

This was much easier than finding the definite integral through its definition!

Take a look at another example.

Evaluate

\[\int_{-3}^3 \sqrt{9-x^2}\,\mathrm{d}x.\]

Answer:

You are looking for the area below the function \( f(x)=\sqrt{9-x^2}.\) By letting \(y=f(x),\) you can write an equation and cancel the square root by squaring both sides, that is

\[ \begin{align} y &= \sqrt{9-x^2} \\ y^2 &=9-x^2, \end{align}\]

from where you can obtain the equation of the standard form of a circumference,

\[x^2+y^2=9.\]

Please note that this function is only the top half of the circle, as a whole circle would fail to be a function!

The function that gives the bottom half of the circle would be \( f(x)= -\sqrt{9-x^2}.\)

The radius of this circle is 3, so you can find its area by using the area of a circle formula, that is

\[\begin{align} A_C &= \pi r^2 \\ &= \pi(3)^2 \\ &= 9\pi, \end{align} \]

but since the area below the curve is *half* the area of the circle, you need to take half of this result. Therefore

\[\int_{-3}^3\sqrt{9-x^2} \, \mathrm{d}x = \frac{9}{2}\pi. \]

In general, functions have intervals where they are positive, and intervals where they are negative. What happens to the area of a function if its graph is below the x-axis? You can still assign it a value! However, areas cannot naturally be negative. In order to get over this, a convention is made by defining the **signed area**.

The **signed area **of a graph is such that:

- If the graph is above the x-axis, the area is defined as positive.
- If the graph is below the x-axis, the area is defined as negative.

A definite integral that involves these two types of intervals also has an area associated to it! You can find it by subtracting the area below the x-axis from the area above the x-axis.

You can use a method of your choice to find the area of each portion of the graph.

- The
**definite integral**\(\int_a^b f(x)\,\mathrm{d}x \) of an integrable and non-negative function gives you the area between \( f(x)\) and the x-axis.- If the function is negative the area is
**defined negative**.

- If the function is negative the area is
- You can
**evaluate**a**definite integral**by taking the limit of a Riemann sum as the number of subintervals tends to infinity. - The evaluation part of the Fundamental Theorem of Calculus is a more practical way of evaluating definite integrals.
- If the area below a curve corresponds to a geometric figure you can use geometric formulas to evaluate the definite integral.

To evaluate a definite integral using the fundamental theorem of calculus follow these steps:

- Find the antiderivative of the function that you are trying to integrate.
- Evaluate the antiderivative at the upper limit of the integral.
- Evaluate the antiderivative at the lower limit of the integral.
- Subtract both values.

More about Evaluating a Definite Integral

60%

of the users don't pass the Evaluating a Definite Integral quiz! Will you pass the quiz?

Start QuizBe perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.