StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

Logarithmic Differentiation

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Area Between Two Curves
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits at Infinity and Asymptotes
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Radius of Convergence
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Separation of Variables
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Conservation of Mechanical Energy
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Elastic Strings and Springs
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Power
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Work Done by a Constant Force
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Argand Diagram
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- De Moivre's Theorem
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trigonometric Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- L'Hopital's Rule
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Distribution Function
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Degrees of Freedom
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test for Regression Slope
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Paired T-Test
- Point Estimation
- Probability
- Probability Calculations
- Probability Density Function
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Spearman's Rank Correlation Coefficient
- Standard Deviation
- Standard Error
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- T-distribution
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Variance for Binomial Distribution
- Venn Diagrams

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenToday I woke up and forgot to take the chicken I'm having for dinner out of the freezer. What should I do? Common advice is to sink the package of chicken into water so it thaws faster. Of course I'm not having chicken with water for dinner! I'm just using the water as a between-step so my dinner is not frozen!

Now think of the chicken as a function, my dinner would be its derivative. What can be the water in my above predicament? Anything that makes differentiation easier but it's not present in the end result! In this article you will explore how to use logarithms to find derivatives.

Logarithms have unique properties like the Product Property of Logarithms and the Power Property of Logarithms, to name a few. These properties can be used when finding the derivative of more complex functions. This is done by using **Logarithmic Differentiation, **which more of a method than a rule.

** Logarithmic Differentiation **is a method that finds the derivative of the logarithm of the function rather than the original function.

But why do you need to use logarithmic differentiation? To take advantage of the properties of logarithms of course!

It is time to take a look at the steps for doing Logarithmic Differentiation.

The method of Logarithmic Differentiation can be summarized in the following steps:

Take the natural logarithm of the original function.

Use any relevant properties of logarithms, like the Power Property of Logarithms or the Product Property of Logarithms.

**The goal of this step is to simplify the function.**Use the Chain Rule and the differentiation rule of the natural logarithm to differentiate each expression.

Multiply the resulting expression by the original function. The result is the derivative of the original function.

The second step is where you can take advantage of the logarithmic differentiation. The properties of logarithms will help you simplify the operations required.

These steps are better understood with examples. Let's dig in!

You can use Logarithmic Differentiation in a wide variety of situations. The properties of logarithms can help you simplify the process of finding the derivative of a function. These can be classified according to which property of logarithms is used to simplify the expressions.

Find the derivative of the function

\[ f(x)=x^8 e^x.\]

**Answer:**

Before starting please note that you can also use the Product Rule to find the derivative of this function. This example illustrates how to use logarithmic differentiation to obtain the same answer.

1. *Take the natural logarithm of the original function.** *

Begin by taking the natural logarithm of the function, so

\[ \ln{f(x)}=\ln{\left( x^8 e^x \right)}.\]

2. *Use any relevant properties of logarithms. In this case, the product property of logarithms and the power property of logarithms.*

Since the right-hand side of the equation is the logarithm of a product, it can be written as the sum of logarithms, that is

\[ \ln{f(x)}= \ln{x^8} + \ln{e^x}.\]

Furthermore, you can use the power property of logarithms to write each exponent as a factor, obtaining

\[ \begin{align} \ln{f(x)} &= 8\ln{x} +x\ln{e} \\ &= 8\ln{x}+x, \end{align}\]

where you have also used the fact that \(\ln{e}=1.\)

3. *D**ifferentiate each expression.*

Next, you need to differentiate both sides of the above expression with the help of the Chain Rule, the Power Rule, and the differentiation rule for the natural logarithm,

\[ \frac{\mathrm{d}}{\mathrm{d}x}\ln{x}=\frac{1}{x},\]

obtaining

\[ \begin{align} \left( \frac{1}{f(x)} \right) \left( f'(x) \right) &= \frac{8}{x}+1 \\ \frac{f'(x)}{f(x)} &= \frac{8}{x}+1. \end{align}\]

4. *Multiply the resulting expression by the original function.*

Finally, isolate the derivative by multiplying both sides of the above expression by the original function, \( f(x)=x^8 e^x,\) and simplify, that is

\[ \begin{align} f'(x) &= f(x)\left( \frac{8}{x}+1 \right) \\[0.5em] &= x^8e^x\left( \frac{8}{x}+1 \right) \\[0.5em] &= e^x\left( \frac{8x^8}{x} +x^8 \right) \\[0.5em] &= e^x(8x^7+x^8). \end{align} \]

Notice that this is exactly what you expected to get!

What about the quotient property of logarithms?

Find the derivative of

\[g(x)=\frac{\sqrt{x+1}}{x^2}.\]

**Answer:**

Rather than using the Quotient Rule (which sometimes is hard to remember) you can use Logarithmic Differentiation!

1. *Take the natural logarithm of the original function.** ** *

This step is rather straightforward, doing so gives you

\[\ln{g(x)} = \ln{\left( \frac{\sqrt{x+1}}{x^2} \right)}.\]

2. *Use any relevant properties of logarithms. In this case use the quotient property of logarithms and the power property of logarithms.*

The logarithm of the quotient can be written as a difference of logarithms, that is

\[ \ln{g(x)} = \ln{\sqrt{x+1}}-\ln{x^2}. \]

Also, you can write the powers (remember that a square root is a power of \( ^1/_2 \) ) as factors using the power property of logarithms, so

\[ \ln{g(x)} = \frac{1}{2}\ln{\left(x+1 \right)}-2\ln{x}.\]

3. *D**ifferentiate each expression.** *

This time differentiating both sides of the above expression gives you

\[ \begin{align} \frac{g'(x)}{g(x)} &= \frac{1}{2}\cdot \frac{1}{x+1}-2\cdot\frac{1}{x} \\ &= \frac{1}{2}\cdot \frac{1}{x+1} -\frac{2}{x}, \end{align} \]

which can be simplified by adding the rational expressions

\[ \frac{g'(x)}{g(x)}= \frac{-3x-4}{2x(x+1)}. \]

4. *Multiply the resulting expression by the original function.** *

Isolate the derivative by multiplying both sides of the above expression by \( g(x) \) and simplify, that is

\[ \begin{align} g'(x) &= \left( g(x)\right) \left(\frac{-3x-4}{2x(x+1)}\right) \\[0.5em] &= \left( \frac{\sqrt{x+1}}{x^2} \right) \left( \frac{-3x-4}{2x(x+1)}\right) \\[0.5em] &= \frac{-3x-4}{2x^3\sqrt{x+1}}. \end{align}\]

Logarithmic Differentiation can be used to find the derivative of a very peculiar function.

Find the derivative of

\[h(x)=x^x.\]

**Answer:**

Here you have \(x\) raised to the power of \(x.\) You identify an exponential function when the variable is the power and not the base, and the Power Rule only applies if the variable is not in the exponent. In this case the variable is both the base and the power! What to do? Logarithmic differentiation of course!

1. *Take the natural logarithm of the original function.** *

As usual, begin by taking the natural logarithm of the function, that is

\[ \ln{h(x)} = \ln{x^x}.\]

2. *Use any relevant properties of logarithms. In this case use the power property of logarithms.** ** *

You can now rewrite the power as a factor using the power property of logarithms, giving you

\[ \ln{h(x)} = (x)(\ln{x}). \]

3. *D**ifferentiate each expression.*

The right-hand side of the above expression is a product of functions, hence it can be differentiated with the product rule, so

\[\begin{align} \frac{h'(x)}{h(x)} &= \left(\frac{\mathrm{d}}{\mathrm{d}x} x \right)\ln{x} + x\left(\frac{\mathrm{d}}{\mathrm{d}x}\ln{x}\right) \\ &= (1)(\ln{x}) + x\left( \frac{1}{x} \right) \\ &= \ln{x}+1. \end{align}\]

4. *Multiply the resulting expression by the original function.** *

Finally, isolate the derivative by multiplying both sides of the above expression by \( h(x) \)

\[ \begin{align} h'(x) &= \left( h(x) \right) \left( \ln{x}+1 \right) \\ &= \left(x^x \right) \left( \ln{x}+1 \right). \end{align} \]

As you can see, logarithmic differentiation is very useful for avoiding working with larger expressions or finding the derivatives of functions that cannot be worked using standard differentiation techniques.

Logarithmic differentiation can also be used to prove some differentiation rules, like the Product Rule and the Quotient Rule. Let's dive into their proof using Logarithmic Differentiation!

You can prove the Product Rule using Logarithmic Differentiation. Consider the function

\[f(x)=g(x)h(x).\]

As usual, begin by taking the natural logarithm of both sides of the function rule

\[ \ln{f(x)} = \ln{\left( g(x)h(x) \right)}, \]

which you can rewrite using the power property of logarithms in the right-hand side, so

\[ \ln{f(x)} = \ln{g(x)} + \ln{h(x)}. \]

Now you can differentiate both sides of the equation using the Chain Rule, that is

\[ \frac{f'(x)}{f(x)} = \frac{g'(x)}{g(x)}+\frac{h'(x)}{h(x)}. \]

Finally, multiply the equation by \( f(x) \)

\[ \begin{align} f'(x) &= f(x)\left( \frac{g'(x)}{g(x)}+\frac{h'(x)}{h(x)} \right) \\ &= g(x)h(x)\frac{g'(x)}{g(x)} + g(x)h(x)\frac{h'(x)}{h(x)} \\ &= h(x)g'(x)+g(x)h'(x). \end{align} \]

The above expression is the Product Rule we all know! You can try proving the Quotient Rule using a procedure similar as above.

Since the goal of using Logarithmic Differentiation is to simplify the process of finding the derivative of a function you should only use it when the derivative becomes easier to find. It can also be used when the derivative of a function cannot be found with standard differentiation techniques, like with \(f(x)=x^x.\)

Whenever you can use the Product Rule or the Quotient Rule, you can also use Logarithmic Differentiation. While the Product Rule might be easier to work around, sometimes you might forget which is the negative term of the Quotient Rule.

There is one common mistake when using the Quotient Rule and that is getting the signs mistaken.

\[\frac{\mathrm{d}}{\mathrm{d}x}\frac{f(x)}{g(x)} \neq \frac{f(x)g'(x)-g(x)f'(x)}{\left( g(x) \right)^2}\]

You can prevent this mistake by using Logarithmic Differentiation since it is easier to recall that the negative term is the one in the denominator.

\[ \ln{\left(\frac{f(x)}{g(x)} \right)} = \ln{f(x)}-\ln{g(x)}.\]

From here, you can continue the process of Logarithmic Differentiation to find the derivative of the function.

\[\frac{\mathrm{d}}{\mathrm{d}x}\frac{f(x)}{g(x)} = \frac{g(x)f'(x)-f(x)g'(x)}{\left( g(x) \right)^2} \]

- Logarithmic Differentiation is a method used to find derivatives using the properties of logarithms.
- The steps followed for Logarithmic Differentiation are the following:
- Take the natural logarithm of the original function.
- Use any relevant properties of logarithms to simplify the function.
- Use the Chain Rule and the differentiation rule of the natural logarithm to differentiate the expression.
- Multiply the resulting expression by the original function.

- The following properties of logarithms can be used to your favor when simplifying expressions:
- Product Property of Logarithms.
- Quotient Property of Logarithms.
- Power Property of Logarithms.

- Logarithmic Differentiation should be used when the derivative becomes easier to find. There is no point in using Logarithmic Differentiation to find the derivative of \(f(x)=x^n.\)

- Take the natural logarithm of the original function.
- Use any relevant properties of logarithms to simplify the function.
- Use the chain rule and the differentiation rule of the natural logarithm to differentiate each expression.
- Multiply the resulting expression by the original function.

To find a derivative using logarithmic differentiation you should follow these steps:

- Take the natural logarithm of the original function.
- Use any relevant properties of logarithms to simplify the function.
- Use the chain rule and the differentiation rule of the natural logarithm to differentiate each expression.
- Multiply the resulting expression by the original function.

More about Logarithmic Differentiation

60%

of the users don't pass the Logarithmic Differentiation quiz! Will you pass the quiz?

Start QuizBe perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Over 10 million students from across the world are already learning smarter.

Get Started for Free