### Select your language

Suggested languages for you:
|
|

## All-in-one learning app

• Flashcards
• NotesNotes
• ExplanationsExplanations
• Study Planner
• Textbook solutions

# The Power Rule

We are often interested in making things simpler and more time-efficient in day-to-day life. Would you wash dishes by hand if you have a dishwasher? Or re-type a paragraph if you can copy and paste? We can say the same for mathematics!

Take the Derivative as an example. Finding the derivative of a function is one of the basic operations in Calculus. However, using limits can be time-consuming as there are many steps and lots of algebra are involved. Here's an example of that process.

Find the derivative of .

Use the definition of a derivative.

Evaluate and .

Expand .

Simplify.

Evaluate the limit.

The derivative of is.

Lots of steps, right? Rather than doing all these procedures, there are many formulas in calculus that we can use to find derivatives with fewer steps, saving us time and mental energy. These formulas are known as derivative rules, and one of these derivative rules is the power rule.

## Power rule formula and examples

One of the primary functions found in calculus is the power function.

Power functions are functions where the variable is the base and is raised to any real number power.

These functions are essential in Calculus for building more advanced functions, like polynomial functions or rational functions. We can find the derivative of a power function using what is known as the power rule. Let's take a look at it.

The power rule is a formula for finding the derivative of a power function. Let be a real number, then:

This rule can make finding derivatives in calculus much simpler! Let's take a look at some examples.

Find the derivative of .

Identify the power of the power function. This function has a power of 5.

Differentiate using The Power Rule.

Simplify the exponent.

The derivative of is.

We can use the power rule in combination with other Differentiation Rules to find the derivative of a polynomial function. Let's look at an example of this process.

Find the derivative of .

Use the sum, difference, and constant multiplier rules.

Differentiate using the power rule.

Simplify.

The derivative of is.

## Deriving the power rule

To prove the power rule, we will look at the derivative of using limits. We need to find such a derivative using limits just once, proving our formula. Then we can use the formula whenever we need to differentiate a power function.

We begin by using the definition of a derivative.

Next, evaluate and .

We can use The Binomial Theorem to expand .

The first two binomial coefficients are 1 and , respectively.

To reflect the definition of a derivative, we need to subtract and divide by on both sides of the equation.

We now have the following expression:

As we take the limit as h goes to 0, every term that contains h vanishes. Hence, we are only left with .

Finally, we have arrived at the power rule.

## Power rule for negative and fractional powers

We only proved the case involving positive integers. However, we can use the power rule when the powers are negative. The formula is the same.

Find the derivative of .

Identify the power of the power function. In this case, the power is -3.

Differentiate using the power rule.

Simplify the exponent.

We can also use the power rule for fractional powers, like in the case of a square root function.

Find the derivative of .

Write the root as a fractional power.

Differentiate using the power rule.

Simplify the power.

Write the negative power in the denominator.

Write the power as a root.

The power rule works when n is any real number. Luckily, the formula is the same for every case!

## More examples of the power rule

Calculus is full of different functions to which we can apply the rules of differentiation. In this section, we will look at more examples of derivatives using the power rule.

Find the derivative of .

Use the sum, difference, and constant multiplier rules.

Differentiate using the power rule.

Simplify.

The following example considers negative powers.

Find the derivative of .

Write the power in the denominator as a negative power.

Use the sum rule.

Differentiate using The Power Rule.

Write the negative exponent as a denominator.

Let's look at more roots, which we can write as fractional powers.

Find the derivative of .

Write the root as a fractional power.

Write the power in the denominator as a negative power.

Use the sum rule.

Differentiate using The Power Rule.

Simplify the powers.

Write the negative powers as denominators.

Write the fractional powers as a power and a root.

With enough practice, we can skip some of these steps.

### Common mistakes when using the power rule

We cannot use the power rule if the variable is the power of an expression.

Find the derivative of .

One common mistake is applying the power rule to functions that are not power functions.

We cannot apply the power rule in a case like this because the given function is not a power function.

Here we could use the Derivative of the Exponential Function instead.

Always remember to decrease the power by one after differentiating the function!

Find the derivative of .

Another common mistake is forgetting to decrease the power of the power function.

We must remember that the power drops when differentiating a power function.

## The Power Rule - Key takeaways

• The power rule is a formula for finding the derivative of power functions.
• The formula for the power rule is as follows:
• We can use the power rule for any real number n, including negative numbers and fractions.
• We can use the power rule and basic derivative rules like the sum, difference, and constant multiplier rules to differentiate polynomial functions.

## Frequently Asked Questions about The Power Rule

The power rule is a differentiation rule for finding the derivative of a power function.

You can use the power rule whenever you need to find the derivative of a power function. The power can be any real number.

To prove the power rule you need to find the derivative of an arbitrary power function through limits. You will also need to use the binomial theorem to expand the power function.

## Final The Power Rule Quiz

Question

The Power Rule can be used if the power is a negative integer.

Show answer

Answer

True.

Show question

Question

The Power Rule can be used if the power is a fraction.

Show answer

Answer

True.

Show question

Question

The Power Rule can be used if the variable is the power.

Show answer

Answer

False.

Show question

Question

The Power Rule can be used if the power is a negative fraction.

Show answer

Answer

True.

Show question

Question

How can you use The Power Rule to differentiate the square root function?

Show answer

Answer

Write the square root as a fractional power. Then, use The Power Rule.

Show question

More about The Power Rule
60%

of the users don't pass the The Power Rule quiz! Will you pass the quiz?

Start Quiz

## Study Plan

Be perfectly prepared on time with an individual plan.

## Quizzes

Test your knowledge with gamified quizzes.

## Flashcards

Create and find flashcards in record time.

## Notes

Create beautiful notes faster than ever before.

## Study Sets

Have all your study materials in one place.

## Documents

Upload unlimited documents and save them online.

## Study Analytics

Identify your study strength and weaknesses.

## Weekly Goals

Set individual study goals and earn points reaching them.

## Smart Reminders

Stop procrastinating with our study reminders.

## Rewards

Earn points, unlock badges and level up while studying.

## Magic Marker

Create flashcards in notes completely automatically.

## Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.