StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
Americas
Europe
By now you are probably wondering why there are so many darn theorems in calculus. Ones about limits, ones about derivatives, ones about integrals, theorems all over the place! That is because by and large it is much easier to prove one theorem and apply it to lots of different functions than it is to prove things for each and every different kind of function. Really the number of theorems in calculus is just a reminder that mathematicians are efficient.
Theorems of continuity rely heavily on what you already know about limits. For a review on limits see Limits and Finding Limits. This first theorem follows directly from the definition of continuity and the properties of limits.
Suppose and
are functions which are continuous at
. Then the following are true:
Sum Property: is continuous at
;
Difference Property: is continuous at
;
Product Property: is continuous at
;
Constant Multiple Property: if is a real number then
is continuous at
;
Quotient Property: if then
is continuous at
.
Suppose
and
.
Where is continuous?
Answer:
Remember that the absolute value function is continuous everywhere, and rational functions are continuous on their domains.
Since is a rational function with a domain of
, it is continuous everywhere except at
.
Then using the Product Property, is continuous everywhere except at
.
Notice that the composition of functions isn't listed in the Properties of Continuous Functions. There is a separate theorem for compositions because it is proven using domains of functions and the definition of continuity rather than by using limits like the Properties of Continuous Functions.
If is continuous at
, and
is continuous at
, then
is continuous at
.
If you know that is continuous at
, is
continuous at
?
Answer:
Take to be the absolute value function, which is continuous everywhere.
That means you know that is continuous at
and
is continuous at
.
Then using the Composition of Continuous Functions theorem, is continuous at
.
You might be wondering why there are plenty of theorems for continuous functions, and no equivalent ones for discontinuity. Let's look at an example to show why not.
Take
and
.
Neither of these functions is continuous at .
If you add these two functions which aren't continuous at , is their sum still discontinuous at
? Well,
,
which is continuous everywhere. So by counterexample, you have shown that there can't be a Sum Property for discontinuous functions.
What about the Product Property? Their product is
,
which is continuous everywhere. So you can't have a Product Property for functions which aren't continuous.
You might be thinking that nothing can go wrong with the Constant Property. It is just multiplying by a constant!
In fact, that one goes wrong too.
Take . Then
, which is continuous everywhere. So even the Constant Property doesn't hold for discontinuous functions.
Similar to the functions in the example above, you can come up with functions to show that the Difference Property and Quotient Property also don't hold for discontinuous functions.
Composition of continuous functions: If is continuous at
, and
is continuous at
, then
is continuous at
.
None of the above properties hold in general for functions that are discontinuous.
There isn't one. Maybe you mean the Intermediate Value Theorem?
That a continuous function on a compact set will attain its minimum and maximum values.
Well, there is more than one theorem about continuity. Proving most of them involves using limits.
There are quite a few. There is one about sums, one about compositions, the Squeeze Theorem and the Intermediate Value Theorem.
The function is defined at the point, the limit exists at the point, and that the limit is equal to the function value at that point.
Be perfectly prepared on time with an individual plan.
Test your knowledge with gamified quizzes.
Create and find flashcards in record time.
Create beautiful notes faster than ever before.
Have all your study materials in one place.
Upload unlimited documents and save them online.
Identify your study strength and weaknesses.
Set individual study goals and earn points reaching them.
Stop procrastinating with our study reminders.
Earn points, unlock badges and level up while studying.
Create flashcards in notes completely automatically.
Create the most beautiful study materials using our templates.
Sign up to highlight and take notes. It’s 100% free.
Over 10 million students from across the world are already learning smarter.
Get Started for Free