StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

3-Dimensional Figures

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Point Estimation
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Standard Deviation
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Survey Bias
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

Maybe you are reading this in front of your computer. Or maybe you have a glass of water next to you.

If you look at any of these objects that surround you, it is clear that they are objects in 3d. But, what is the math definition for a three-dimensional figure?

In this article, we will learn more about 3-dimensional figures and their applications.

A three-dimensional shape is a geometric body with 3 dimensions of space that are, **length, width, **and** depth**. Sometimes the depth is referred to as height.

For example, imagine you grab a box from a certain delivery company.

If you put the box in a way that you can only observe one of its faces, you will be observing a plane surface in 2d, and then you will be observing just the length and width of that face.

But if you turn it a little bit you will see that the box also has some depth. That is what we refer to with three-dimensional figures.

As you may have observed with the box, these three-dimensional shapes have **volume**. In math, we define volume as the quantity of space inside a closed surface.

Grabbing the box again and if you open it now, the volume would be the quantity of space inside the box. We will learn later how to compute this volume.

These geometric shapes generally, except for some exceptions we will use, have **faces** which are the surfaces with a certain surface area that delimitate the figure. These faces join in **vertices**, which are points of union.

Finally, the lines that delimitate these surfaces and the contour of the geometric figure are named **edges**. We would compare them with the sides of the 2-dimensional shapes.

Taking the look away from this article and looking around you, you will probably identify a lot of three-dimensional figures with different structures. From the bed to the chair, to the table or even to the books you use to study. All of them are 3d shapes as they have the 3 dimensions we mentioned before; length, width, and depth, and also because they have volume.

We distinguish between **regular** and **irregular** 3d shapes. We will focus on the regular three-dimensional figures, as they are more common in math.

A cone is a three-dimensional figure that we would obtain if we make a right triangle (that has one angle equal to 90º) turn around with one of its sides fixed, so we get a shape in 3d. This figure normally has a circular base and a **vertex** where the lateral surface of the cone tapers to.

The base does not have to necessarily be a circle, it can also be another two-dimensional circular figure such as an oval. You can observe this shape in the real world when you look at the traffic cones.

This figure is similar to the cone, but in this case, the base does not have a circular form. The base is a two-dimensional figure with three or more sides such as a triangle, square, rectangle, etc.

As the geometric form of the base can vary, it also changes the number of edges. All of its surfaces, no matter how much it has, taper to a vertex.

The famous pyramids of Egypt are one example of these geometric shapes, in this case, they have a squared base.

This geometric figure consists of six faces of the equal-area meeting three of them in a single vertex, with a total of eight vertices and a total of twelve edges.

An example of a cube is a dice. If you observe it, all of the faces of a regular dice have the same surface and each vertex of it works as a union for three different faces.

It is similar to the cube, as it also has eight vertices, twelve edges, and six faces, but in this case, all of the faces are not equal. Each face is equal to its opposite, therefore we have pairs of equal faces.

An example of a rectangular prism could be a drawer or even a box, although sometimes they have the shape of a cube.

There exist other kinds of prisms, regarding the shape of its base and the opposite face. For example, if these faces have the shape of a triangle, it is a **triangular prism** that will have five faces in total instead of the six faces that the rectangular prism has. But this base (and the opposite face) can have another 2-dimensional figure that gives different types of prisms: **pentagonal prisms**, **hexagonal prisms**, etc.

The shape of this figure can remind you of a rectangular prism, but in this case, it has two surfaces, which are called the **top** and **bottom** (or base) of the figure, that consist of two-dimensional circular figures.

This figure does not have any vertex. The surface that connects those two faces is essentially a rectangle but curved.

You can find these kinds of geometric shapes in cans or some glasses.

A football, a basketball, or maybe, if we do not want to just limit ourselves to the sports world: a bubble. All of these objects share one common thing: they are spheres.

These geometric shapes are obtained if we make a circle, which is a two-dimensional figure, turned around its diameter. The volume this revolution describes is defined as a sphere.

As it happens with the circle in two dimensions, all of the points of the surface are equally distanced from the point in the center of the figure. This distance is called the **radius**. If we trace a distance between two points of the surface of the sphere that goes through the center of it, this distance is called the **diameter** of the sphere, which corresponds to two times the radius.

When working with 3d shapes, there are some things we might want to know about them. In particular, there are two characteristics we are interested in.

The first one is the **area** of the figure.

The area of the figure is the quantity of surface that the faces of the figure occupy. The units for the surface area of the figure are the units of area, being the square meter the standard one (m2).

To obtain the total surface area of the figure we have to sum the areas of each face of the shape. We should not confuse the surface area of the figure with its volume. The area consists only of the surface of the faces, independently of what is inside of them.

On the other hand, we have the **volume** of the figure.

The volume of a figure is the quantity of space there is inside the surface delimited by the faces of the figure. The units for the volume are the units of volume, being the cube meter as the standard one.

If we grab again the box we have talked about in this article, you can see that the surface of the cardboard used for all of the faces corresponds to the surface area of the box, but the space there which is inside the box corresponds to its volume.

Let’s see how some of the math equations for the 3d shapes we have seen before.

The surface area of a three-dimensional figure is the sum of the areas of its faces.

For a cone, the surface area of its base is , where *r* is the radius of the circle. The area of the lateral face is , being *g* the distance between any point of the edge of the base to the vertex. Therefore, the surface area of a cone can be generally expressed as,

.

The volume for a cone is given by the following formula,

,

where *h* is the distance from the center of the base to the vertex.

In this case, the formulas of the area and volume will depend on the number of edges the base has.

For example, if the pyramid has a squared base, the surface area of the pyramid will be the sum of the area of the square with the sum of the areas of each triangle that connects the vertices . In general, we can express the surface area of a pyramid as,

Be careful, as the base does not have to be regular, and the surface area of the triangles that connect with the vertex does not have to be either.

The volume of a pyramid will also depend on the base it has. For a square pyramid, the volume follows the formula,

being

*h*the distance from the center of the base to the vertex*l*the length of the edges of the base.

In this case, as the rectangular prism and the cube are formed by six faces, to obtain the total surface area of the figure we just have to sum the areas of each face.

For the cube, all six faces will have the same area, but for the rectangular prism, as each face is equal to its opposite, there are three different values. A general math expression for the surface area of a rectangular prism is,

where *A*_{1 }, *A _{2 }*, and

The volume for those shapes is the multiplication of the three edges; the length, the width, and the depth of the prism, such as,

In the case of the cube, as all of the sides are equally long, we have,

The cylinder consists of two circles that are the top and bottom of the figure and a curved rectangle. Therefore, if the area for a circle is , the sum of all the areas is,

where *h* is the height from one point of the bottom to the point in the top at the same position.

The volume for the cylinder is described by the following equation,

The sphere we know is a different type of geometrical figure, as it is not formed by the union of different faces. That is why we need a math expression to compute its surface area,

And the volume for the sphere is determined by the following formula,

.

Now, let us look into some examples of problems you may encounter on 3-dimensional figures.

Find the volume of water that is needed to fill a cylindrical glass cup of height 12cm and radius 7cm. Take .

**Solution**

Using

then,

Kohe wishes to make a conical cap of a radius of 14cm and a height of 20cm for 8 friends ahead of his birthday party. What is the total area of the cardboard paper does he need to make all 8 for his friends?

**Solution**

First we find the total surface area of one conical cap. Using

In this case, g is the height of the cone which is 20cm and r is 14cm. Hence,

But this is just the area of 1onecone, you need to find the area of 8 cones. Thus,

Hence Kohe would need a cardboard with a total surface area of 11,968cm^{2} to successfully make 8 conical caps for his friends ahead of his birthday party.

- Three-dimensional figures consist of shapes with three dimensions; length, width, and depth. Sometimes depth is referred to as height.
- These figures have surfaces that formed them called faces. The faces join themselves in vertices. And the lines that delimit these faces are called edges.
- There are lots of different examples of 3d shapes. Some of the most used figures are the cone, the pyramid, the cube, the prisms, the cylinder, and the sphere.
- Some 3-dimensional figures such as the cone, the pyramid, or the sphere are obtained if you make a two-dimensional figure revolute around one of its axes or edges.
- The area of a three-dimensional figure is the surface occupied by its faces. Generally, the area of a three-dimensional figure is obtained by summing the surface areas of all of its faces. The volume of the 3d shapes is the space that is inside of the surface delimited by its faces. To obtain it we use different formulas regarding the figure we want to calculate the volume of.

**sum the length** of all of his **edges**. For example, for a rectangular prism, that has 12 edges, you have to sum the 12 lengths of the figure to obtain its perimeter.

**volume**, that is the quantity of space inside of the surface that delimits the figure.

More about 3-Dimensional Figures

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.