StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

Plane Geometry

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Area Between Two Curves
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits at Infinity and Asymptotes
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Radius of Convergence
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Separation of Variables
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Conservation of Mechanical Energy
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Elastic Strings and Springs
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Power
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Work Done by a Constant Force
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Argand Diagram
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- De Moivre's Theorem
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Distribution Function
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Degrees of Freedom
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test for Regression Slope
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Paired T-Test
- Point Estimation
- Probability
- Probability Calculations
- Probability Density Function
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Spearman's Rank Correlation Coefficient
- Standard Deviation
- Standard Error
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- T-distribution
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Variance for Binomial Distribution
- Venn Diagrams

Let's say you're in class and want to take notes. You pull out a sheet of paper from your notebook to write on: this sheet of paper is similar to a geometric plane in that it is a **two-dimensional space** that provides a canvas to hold the information you draw or write on it.

Planes in geometry provide a space for defining lines and points. Unlike a piece of paper, however, geometric planes extend infinitely. In real life, any flat two-dimensional surface can be considered mathematically as a plane, such as, for example, the surface of a desk. On the other hand, the block of wood that forms the top of the desk cannot be considered a two-dimensional plane, as it has three dimensions (length, width, and **depth**).

This article will explain the topic of planes in geometry and will go into detail about the **definition** of planes, some **examples** of planes, how planes **intersect**, and the **equation** of planes.

Let's begin our discussion with a formal definition of a plane.

In geometry, a **plane** is a flat two-dimensional surface that extends infinitely. Planes are defined as having zero thickness or depth.

For example, a **Cartesian coordinate system** represents a plane, since it is a flat surface that extends infinitely. The two dimensions are given by the the x- and the y-axis:

Since a plane is two-dimensional, this means that **points** and **lines** can be defined as existing within it, as they have less than two dimensions. In particular, points have 0 dimension, and lines have 1 dimension. Additionally, all two-dimensional shapes like quadrilaterals, triangles, and polygons are part of plane geometry and can exist in a plane.

The figure below shows a plane with points and a line. When points and lines exist within a plane, we say that the plane is the **ambient space **for the point and the line.

So, small geometrical objects like points and lines can "live" in bigger ones, like planes. These bigger objects hosting smaller ones are called **ambient spaces**. According to this same logic, can you guess what the ambient space that hosts a plane is?

It takes a three-dimensional space to provide ambient space for a two-dimensional plane. In fact, a three-dimensional Cartesian coordinate system can contain an infinite number of planes, lines, and points. Similarly, a plane can contain an infinite number of lines and points.

We know that the equation of a line in a two-dimensional Cartesian system is typically given by the equation . On the other hand, the equation of a plane must be defined in three-dimensional space. Thus, it is a bit more complex. The equation to define a plane is given by:

Now that we have seen the equation, how can we build a plane in geometry? Some methods include:

- Three non-collinear points
- A normal vector and a point

We can define a plane by using 3 points that are **non-collinear **and** coplanar**. But what does it mean to be non-collinear and coplanar? Let's look at the definitions.

**Non-collinear points** occur when 3 or more points do not exist on a shared straight line.

**Coplanar points** are points that lie on the same plane.

If 3 given points are non-collinear and coplanar, we can use them to define the plane they share. The figure below shows a plane ABC which is defined and formed by the coplanar points A, B, and C.

Next, let's take a second look at the figure which now includes a new point, D.

Is D a coplanar point as well? From the figure, we can see that point D doesn't lie on plane ABC like the points A, B, and C do. Rather, it appears to be lying above the plane. So, point D is **non-coplanar**. Let's take a look at an example about defining a plane using three points.

Define the plane shown below using three points.

**Solution:** From the figure, we see that Q, R, and S are non-collinear and coplanar. Therefore, we can define a plane QRS using these three points. Although point T is also non-collinear with the other points, it is **not **coplanar because it is **not** at the same level or depth as points Q, R, and S. Rather, it floats above the points Q, R, and S. Therefore, point T cannot help us define the plane QRS.

Does point D, given by, lie on plane ABC, given by ?

**Solution: **To check whether a point lies on a plane, we can insert its coordinates into the plane equation to verify. If the point's coordinates are able to satisfy the plane equation mathematically, then we know the point lies on the plane.

Therefore, point D lies on plane ABC.

A point in a three-dimensional Cartesian coordinate system is denoted by .

Of all the infinite planes that can exist in a three-dimensional Cartesian coordinate system, three are particularly important:

- The plane that is given by the equation (red in the figure below)
- The plane that is given by the equation (green in the figure below)
- The plane that is given by the equation (blue in the figure below)

Each plane is split into **four quadrants**, based on the values of the coordinates. For example in the xy plane, we have the following four quadrants:

- The first quadrant has a positive x and y coordinate
- The second quadrant has a negative x and positive y coordinate
- The third quadrant has a negative x and negative y coordinate
- The fourth quadrant has a positive x and negative y coordinate.

Determine which of the following points lies in the xy plane:**.**

We know that points that lie in the xy plane will have a z-value of 0, as they are only defined by the x- and y- axes. This means that the point lies in the xy plane.

Recall that a vector is a quantity that is defined by two elements: a magnitude (size or length) and a direction (orientation in space). Vectors are typically represented in geometry as arrows.

In a three-dimensional Cartesian space, vectors are denoted by a linear combination of **components**. For example a vector with component 1 in the x direction, 2 in the y direction, and 3 in the k direction is denoted by:

A vector perpendicular to a plane is said to be **normal** to the plane. Such a vector has a very special property: the values of a, b, and c in the plane equation (ax+by+cz = d) are given by the components of the vector normal to the plane!

This means that we can find the equation of a plane if we know both:

- The coordinates of one point on the plane, and
- The vector normal to the plane.

Let's take a look at some examples.

A plane P has a normal vector . The point lies on plane P. Find the equation of the plane P in the form.

**Solution:**

The normal vector gives us our values for a, b, and c:

- The
**i**component of the vector is**a**, so - the
**j**component is**b**, so - and the
**k**component is**c**, so

This gives us: .

Next, we now need to find the value of d. How can we do this? Well, we know the coordinates of a point that lies on the plane, so if we substitute these values into the equation, it will give us **d**. Remember, the coordinates of the point is in the form .

Now we have our value for d, so we can put this back into the equation to give us our answer:

** **** **

Find an equation for the plane that passes through the point and is parallel to the plane

**Solution:**

The plane is parallel to the plane . This means that they share the same normal, and a plane written in the form has normal vector, . Thus, the plane has normal . This gives us part of the equation for the plane: . We must now find a value for d. As the plane passes through the point , we know that the point lies on the plane. Therefore, we can substitute these values into our plane equation to give us a value for d:

Our value for d gives us our complete plane equation:

If we have two planes in a three-dimensional space they are either parallel planes, meaning they never intersect (meet), or they are intersecting planes. When two lines intersect they intersect at a singular point, as lines are one-dimensional. When planes intersect, they intersect at a line that extends infinitely; this is because planes are two-dimensional. Imagine you had two pieces of paper that could pass through each other, these two sheets of paper each represent planes. When you pass them through each other, they will intersect once and form a line.

As you can see in the above image, intersecting planes form a line.

When we define a plane and a line, there are three possible cases:

- The plane and the line are parallel, meaning that they will never intersect.
- The plane and the line intersect at a single point in three-dimensional space.
- The line lies on the plane.

In the case that a line intersects perpendicular to (at a right angle) a plane, there are more properties we can utilize:

- Two lines that are perpendicular to the same plane are parallel to each other.
- Two planes that are perpendicular to the same line are parallel to each other.

Let's consider a couple more examples involving planes in geometry.

Define the plane:

This plane can be defined as CAB, since a plane is made up of three non-collinear and coplanar points: C, A and, B are non-collinear and coplanar.

A plane P has a normal vector . The point lies on plane P. Find the equation of the plane P in the form.

**Solution:**

The normal vector gives us our values for a, b and c:

- The
**i**component of the vector is**a**, so - the
**j**component is**b**, so - and the
**k**component is**c**, so

This gives us: .

Now we can use the given point to find the value of d. Since we have been given the coordinates, we can substitute them into the equation to solve for d.

Therefore:

** **** **

- A plane is a flat two-dimensional surface that extends infinitely.
- The equation of a plane is given by:
- 3 non-collinear points can be used to define a plane in three-dimensional space.
- In coordinate geometry, we typically define points and lines in the xy, xz and yz planes. If a point lies in one of these planes, then they have a coordinate of 0 in the remaining axis.
- When planes intersect, they intersect at a line that extends infinitely.
- A plane and a line are either parallel, intersect at a point, or the line lies in the plane.
- Two lines that are perpendicular to the same plane are parallel.
- Two planes that are perpendicular to the same line are parallel.

A plane is a flat two-dimensional surface that extends infinitely.

The intersection of two planes is called a line.

More about Plane Geometry

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Over 10 million students from across the world are already learning smarter.

Get Started for Free