StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Surface Area of a Solid

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Point Estimation
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Standard Deviation
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

Have you ever wrapped a gift with wrapping paper? If so, then you are familiar with solids and surface area!

A **solid** is a three-dimensional (3D) shape. **Surface area** is the total area for the faces that make up a solid. In other words, for our wrapping paper example, the surface area is the amount of paper it would take to cover the gift! Here you will explore methods and equations for calculating the surface area of solids.

The **faces** of a shape are the flat surfaces that make up the solid, the **bases** are the top and bottom surfaces of a solid.

When finding the surface area of a solid, there are two different types of surface area that can be found:

the total surface area

the lateral surface area

**Total Surface Area:** the sum of the areas of the faces and bases that make up a solid.

To find the **total surface area** of any solid, you sum the area of **all** the faces and bases of the solid.

What about lateral surface area?

**Lateral Surface Area**: the sum of the faces that make up a solid, excluding the base(s).

To find the **lateral surface area**, you sum the area of the faces of the solid **excluding the base(s)**.

When finding the surface area of any solid, you will have to break down the shape: this can be done differently depending on the solid that you have been given. To help you find the surface area of a solid, there are formulas that can be used, these depend on the type of solid that you have!

Let's take a look at some types of solids and the formulas that you could use to find the surface area.

A **cylinder** is a type of solid that has no straight edges, it is similar to a prism where both bases are the same shape and the surface area can be calculated in a similar way.

In general, the variables used will be:

\(B\) - area of the base;

\(C\) - circumference of the base;

\(r\) - radius of the base;

\(h\) - height of the cylinder; and

\(S\) - surface area of the cylinder.

There is a formula that can be used to find the surface area of a cylinder;

\[\begin{align} S& =2B+Ch \\ &=2\pi r^2+2\pi rh. \end{align}\]

To find out more about the surface area of cylinders, see Surface of cylinders.

A **cone** is a type of solid that has a base and a vertex. A cone has a height and a slant height, the height is the distance from the center of the base to the top of the cone, the vertex. While the slant height is the distance from the edge of the base to the vertex.

There is a formula that can be used to help you find the surface area of a cone:

\[S=B+\frac{1}{2}Cl=\pi r^2+\pi r\cdot l\]

where

\(B\) - area of the base

\(C\) - circumference of the base

\(r\) - radius of the base

\(l\) - slant height

To find out more about the surface area of cones, see Surface of cones.

A sphere is a type of solid that is a 3D circle, for example a ball. A sphere has a center point and the radius is the distance from the center point to the outer point on the sphere.

There is a formula that can be used to help you find the surface area of a sphere:

\[S=4\pi r^2\]

\[r=\text{the radius}\]

To find out more about the surface area of spheres, see Surface of spheres.

A pyramid is a type of solid that has a base and triangular faces all coming to a vertex. There are different types of pyramids, that are all named based on the type of base that they have:

Square pyramid

Rectangular pyramid

Triangular pyramid

Hexagonal pyramid

Here are a few diagrams showing what these pyramids look like;

There is a formula that can be used to find the surface area of a pyramid:

\[S=B+\frac{1}{2}Pl\]

where

- \(B\) - area of the base
- \(P\) - perimeter of the base
- \(l\) - slant height

To find out more about the surface area of pyramids, see Surface of pyramids.

A rectangular solid is a 3D shape where all of the sides are rectangles.

Here is an example of what a rectangular solid may look like.

To understand how to find the surface area of a rectangular solid it can be helpful to break the shape down, into its different sections. In the diagram above you can see that there are two faces with sides \(L\) and \(W\). There are two faces with the side lengths \(L\) and \(H\) and there are two faces with the side lengths \(W\) and \(H\).

Since the surface area is the sum of the area of each of the shapes' faces, to find the surface area of a rectangular solid you can find the area of each of these faces and add them together.

This can be put into a formula to help you find the total surface area of the rectangular solid:

\[S=2LW+2LH+2WH.\]

Let's look through an example of how this formula may be used.

Find the surface area for the following rectangular solid;

Answer:

In order to find the surface area for a rectangular solid, let's first identify each part of the shape.

- \(L = 5\, cm\)
- \(W = 7\, cm\)
- \(H = 10 \, cm\)

Now you can input each value into the formula and simplify:

\[\begin{align} S&=2LW+2LH+2WH\\ &=2(5)(7)+2(5)(10)+2(7)(10) \\ &= 2\cdot 35+2\cdot 50+2\cdot 70 \\&=70+100+140 \\ &=310. \]

Don't forget the units! The surface area is \(310 \, cm^2\).

A triangular solid, also known as a triangular prism, is a type of 3D shape where the bases of the shape are triangles.

A triangular solid looks like this:

There are many different types of prisms, not only the triangular prism.

A prism is a type of solid where both bases are the same shape.

When a prism is cut in half you are left with two identical shapes, there are different types of prisms:

Hexagonal prism

Triangular prism

Rectangular prism

Square prism

Here are a few diagrams showing what these prisms look like:

The **apothem** of a base is the distance from the midpoint of the shape to the outer side.

No matter the type of prism you have, you can find the surface area of a prism by using the formula:

\[S=2B+Ph = aP+Ph\]

where

\(B\) - area of the base

\(a\) - apothem of the base

\(P\) - perimeter of the base

\(h\) - height

To find out more about the surface area of prisms, see Surface of prisms.

A solid hemisphere looks like a sphere that has been cut in half. It looks like this;

To find the total surface area of a solid hemisphere, you have to find the area of the circle base as well as the area of the curved face. To help you do this in just one calculation, there is a formula that can be used:

\[A=3\pi r^2\]

where \(r\) is the radius.

This formula is very similar to the formula that you use to find the surface area of a sphere, \(4\pi r^2\). When you are finding the surface area of a solid hemisphere you are finding the surface area of half a sphere, therefore you half the formula to give you \(2\pi r^2\). You also need to add the area for the circle base \(\pi r^2\), adding these together gives you the formula for a solid hemisphere!

Let's look at an example using this formula.

Find the total surface area for a solid hemisphere that has a radius of \(5\, cm\).

Answer:

Firstly, you have been told that the solid is a solid hemisphere with a radius of \(5\, cm\). To find the total surface area, you can use the formula for the solid:

\[A=3\pi r^2.\]

Now you can input the information from the question, namely \(r=5\), to get

\[\begin{align} A&=3\pi 5^2 \\ &= 75\pi \\ &\approx 235.6 .\]

Notice the difference between the exact area \( 75\pi \, cm^2\) and the approximation of the area, \( 235.6 \, cm^2\).

Here are some examples of finding the surface area of solids.

Find the surface area for the following solid.

Answer:

First, notice that this is a cone. Next, what information do you have in the diagram?

- The radius \(r\) is 5 inches.
- The slant height \(l\) is 10 inches.

Knowing that you have the slant height tells you which formula for the surface area of a cone you should use. In this case, it is

\[S=\pi r^2+\pi r \cdot l.\]

Now you can plug in what you know to the formula:

\[\begin{align} S &=\pi 5^2+\pi (5)(10)\\ &=\pi 5^2+50\pi \\ & = 75\pi .\end{align}\]

When writing your answer don't forget the units! So the surface area of the cone is \(75\) square inches, or \(75\, in^2\).

You may be asked to approximate the surface area. In that case, using an approximation for \(\pi\) and rounding to one decimal place gives you that the surface area is approximately \(235.6 \, in^2\). You could write this as

\[S \approx 235.6 \, in^2.\]

Here is another example.

What formula would you use to find the surface area of the following solid?

Answer:

To find the surface area of this shape you would first need to identify the shape. It is a sphere.

Now you can recall the formula used to find the surface area for a sphere, which is

\[S=4\pi r^2.\]

- A solid is a 3D shape, you can find the surface area of a solid by summing all the faces and bases of the shape.
- You can use different formulas depending on the solid to help you quicker find the surface area;
- Surface area of a prism \[S=2B+Ph = aP+Ph\]
- Surface area of a cylinder \[S=2B+Ch=2\pi r^2+2\pi rh\]
- Surface area of a cone \[S=B+\frac{1}{2}Cl=\pi r^2+\pi rl\]
- Surface area of a sphere \[S=4\pi r^2\]
- Surface area of a pyramid \[ S=B+\frac{1}{2}Pl\]

The surface of a solid is the surface area of a 3D shape.

To find the surface of a solid each different shape has its own formula.

The formula used to find the surface of a solid cylinder is S=2B+Ch=2πr^{2}+2πrh

To find the surface area of a sphere you can use the formula S=4πr^2

When finding the surface area of a solid, you sum all of the faces and bases of the shape.

More about Surface Area of a Solid

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.