Select your language

Suggested languages for you:
Log In Start studying!
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Trapezoids

Trapezoids

What do a Chinese takeaway box and a designer handbag have in common? Observe how they represent the same shape.

Parallelogram shape of a handbag and takeaway box, StudySmarter Originals

Parallelogram shape of a handbag and takeaway box, StudySmarter Originals

Now, notice how both the bases of the handbag and takeaway box are parallel to their tops. Since this shape has four sides, it is classified as a type of quadrilateral. However, it is neither a square, a rectangle nor a parallelogram. These shapes have two pairs of parallel sides while the shape described by this handbag and takeaway box has only one pair. Have you got any guesses as to what this shape might be? Let me give you a hint: it's called a trapezoid.

This article will explore the definition of a trapezoid along with its characteristics and types. We shall also look into the formulas used to find the perimeter and area of a trapezoid.

What is a Trapezoid?

As mentioned before, a trapezoid falls under the category of a quadrilateral as it contains four sides. This special type of quadrilateral actually has two names: a trapezoid and a trapezium. The name varies from where you are in the world. Here in the United States, it is typically called a trapezium. However, in the United Kingdom, it is usually called a trapezium. How interesting is that? With that in mind, let us begin our discussion with the definition of a trapezoid.

A trapezoid is a quadrilateral with one set of parallel sides.

Below is a graphical representation of a trapezoid. We shall call this trapezoid ABCD.

Illustration of a trapezoid, StudySmarter Originals

Illustration of a trapezoid, StudySmarter Originals

We shall now move on to listing the properties of a trapezoid. By doing so, we can observe how different they are compared to a regular quadrilateral.

Characteristics of a Trapezoid

Let us now refer back to our trapezoid ABCD above. There are several notable characteristics of trapezoids we should familiarize ourselves with. These are listed below.

  • A trapezoid has a pair of parallel sides and a pair of non-parallel sides;

  • Usually, the bases (the top and bottom) of ABCD are parallel to each other. This can be written as AD // BC;

By the definition of a trapezoid.

  • A pair of adjacent angles formed between one parallel side and one non-parallel side of a trapezoid add up to 180°. Here, ∠ABC + ∠BAD = 180° and ∠BCD + ∠ADC = 180°;

  • The sum of the interior angles of a trapezoid is 360°;

  • The diagonals of a trapezoid bisect each other;

  • The median (midline or midsegment) of a trapezoid is parallel to both bases. This is shown by the pink line below;

Median of a trapezoid, StudySmarter Originals

Median of a trapezoid, StudySmarter Originals

The median (or mid-section) of a trapezoid is the line segment connecting the midpoints of the two non-parallel sides of a trapezoid.

  • The length of the median is the average of both bases. Say a = AD and b = BC, then m=a+b2 , where m is the median.

Forming Other Quadrilaterals from Trapezoids

There are three types of quadrilaterals that can stem from a trapezoid, namely a parallelogram, a square and a rectangle. These instances are described in the table below.

Type of Quadrilateral

Description

Parallelogram

Parallelogram, StudySmarter Originals

Parallelogram, StudySmarter Originals

  • A trapezoid where both pairs of opposite sides are parallel to each other

Square

Square, StudySmarter Originals

Square, StudySmarter Originals

  • A trapezoid where both pairs of opposite sides are parallel to each other

  • All four sides are of equal length and at right angles to each other

Rectangle

Rectangle, StudySmarter Originals

Rectangle, StudySmarter Originals

  • A trapezoid where both pairs of opposite sides are parallel to each other

  • The opposite sides are of equal length and at right angles to each other

Types of Trapezoids

There are five types of trapezoids we should consider, namely

  1. Scalene trapezoid

  2. Isosceles trapezoid

  3. Right trapezoid

  4. Obtuse trapezoid

  5. Acute trapezoid

The table below describes each of these trapezoids in turn along with their pictorial representation and distinct traits.

Type of Trapezoid

Pictorial Representation

Description

Scalene Trapezoid

Scalene trapezoid, StudySmarter Originals

Scalene trapezoid, StudySmarter Originals

A trapezoid with no sides or angles of equal measure.

Isosceles Trapezoid

Isosceles trapezoid, StudySmarter Originals

Isosceles trapezoid, StudySmarter Originals

A trapezoid with opposite sides of the same length.

Usually, represented by the non-parallel sides (or legs) of a trapezoid. The angles of the parallel sides (or bases) are equal to each other.

Right Trapezoid

Right trapezoid, StudySmarter Originals

Right trapezoid, StudySmarter Originals

A trapezoid with two adjacent right angles (equal to 90o).

Obtuse Trapezoid

Obtuse trapezoid, StudySmarter Originals

Obtuse trapezoid, StudySmarter Originals

A trapezoid with two opposite obtuse angles (more than 90o).

Acute Trapezoid

Acute trapezoid, StudySmarter Originals

Acute trapezoid, StudySmarter Originals

A trapezoid with two adjacent acute angles (less than 90o).

The Perimeter of a Trapezoid

A trapezoid is a two-dimensional polygon that lies on a two-dimensional plane. The perimeter of a trapezoid is described as the total length of its boundary. In other words, it is the sum of all its sides. Say we have a trapezoid ABCD with sides a, b, c, and d.

The perimeter of a trapezoid, StudySmarter Originals

The perimeter of a trapezoid, StudySmarter Originals

Then the perimeter of a trapezoid formula is

P = a + b + c + d,

where P is the perimeter, a = AB, b = BC, c = CD and d = AD. This can also be written as

P = AB + BC + CD + AD.

Examples Using the Perimeter of a Trapezoid Formula

Let us now look at some worked examples involving the formula for finding the perimeter of a trapezoid.

Given the trapezoid below, find its perimeter.

Example 1, StudySmarter Originals

Example 1, StudySmarter Originals

Solution

To find the perimeter of this trapezoid, we shall simply add the measures of all four sides together.

P=13+21+19+34P=87 units

Thus, the perimeter of this trapezoid is 87 units.

An isosceles trapezoid has a perimeter of 35 units. What is the length of each (equal) opposite side given that the bases are 5 units and 8 units, respectively?

Solution

Here, we are given the perimeter of a trapezoid and the lengths of the bases. We are also told that this trapezoid is an isosceles trapezoid, meaning that there is a pair of equal opposite sides. We shall name these two identical sides by x.

Example 2, StudySmarter Originals

Example 2, StudySmarter Originals

Since the perimeter is the sum of all four sides of this trapezoid, we can write this as the equation below.

P=5+8+x+x35=13+2x

Rearranging this equation, we obtain

2x=35-132x=22

Simplifying this, we obtain

x=222x=11 units

Thus, the value of each opposite side is 11 units.

The Area of a Trapezoid

The area of a trapezoid is defined by the space enclosed within its boundary. It is found by calculating the average length between two given parallel sides and multiplying this product with the height of the trapezoid. Observe the illustration of trapezoid ABCD below.

Area of a trapezoid, StudySmarter Originals

Area of a trapezoid, StudySmarter Originals

Here, the bases are a = BC and b = AD. The height is denoted by the letter h.

The height, h of a trapezoid is at a perpendicular distance between bases, a and b. It is also referred to as the altitude of a trapezoid.

Thus, the area of a trapezoid is

A=12(a+b)×h ,

where A = area, a = length of the shorter base, b = length of the longer base and h = height. Similarly, we can express this formula as

A=BC+AD2×h.

Examples Using the Area of a Trapezoid Formula

Let us now look at some worked examples applying the area of a trapezoid formula.

Identify the area of the following trapezoid.

Example 3, StudySmarter Originals

Example 3, StudySmarter Originals

Solution

Here,

a = 6 units;

b = 8 units;

h = 5 units.

Don't get yourselves confused by the other two sides given! They are not parallel to each other so we cannot use their measures in our formula.

Now, using the area of a trapezoid formula, we obtain

A=12(a+b)×hA=12(6+8)×5

Simplifying this, we get a final answer of

A=12(14)×5A=7×5A=35 units2

Thus, the area of this trapezoid is 35 units2.

Find the length of the shorter base of a trapezoid given that the area is 232 units2, the height is 16 units and the length of the longer base is 17 units.

Solution

In this case,

A = 232 units2

b = 17 units;

h = 16 units.

Substituting these values into our formula, we obtain

A=12(a+b)×h232=12(a+17)×16

Solving this, we have

232=16(a+17)2232=8(a+17)

Expanding this, we get

232=8a+1368a+136=232

Rearranging this equation and solving for a, we obtain the following final answer.

8a=232-1368a=96a=968a=12 units

Hence, the length of the shorter base of this trapezoid is 12 units.

Example Involving Trapezoids

We shall end this topic with an example that encompasses everything we have learnt throughout this discussion.

Given the trapezoid ABCD below, determine its type, perimeter and area.

Example 4, StudySmarter Originals

Example 4, StudySmarter Originals

Solution

Type

Let us first deduce what type of trapezoid this is. Looking at the diagram above, observe that ∠BAD = 103o and ∠BCD = 118o. Both these angles are greater than 90o and are located opposite each other. Thus, we have an obtuse trapezoid.

Perimeter

Next, we shall find the perimeter of this trapezoid. Adding all four sides of this trapezoid, we obtain

P=AB+BC+CD+ADP=14+16+18+22P=70 units

Thus, the perimeter of this trapezoid is 70 units.

Area

Here, BC (shorter base) is parallel to AD (longer base). The height is perpendicular to both these bases. Thus,

a = 16 units;

b = 22 units;

h = 11 units.

Applying the formula of the area of a trapezoid, we obtain

A=12(16+22)×11A=12(38)×11A=19×11A=209 units2

Thus, the area of this trapezoid is 209 units2.

Bonus Question

What is the value of angle ∠ADC given that ∠ABC = 88o?

By the property of trapezoids, the sum of its interior angles adds up to 360°. Since we have the measures of three angles, we can find the value of the missing angle below.

ABC+BCD+ADC+BAD=360°88°+118°+ADC+103°==360°

Rearranging this and solving for the unknown angle, we obtain

ADC=360°-88°-118°-103°ADC=51°

Thus, angle ∠ADC is 51o.

Trapezoids - Key takeaways

  • A trapezoid is a quadrilateral with one set of parallel sides.
  • There are 5 types of trapezoids: scalene, isosceles, right, obtuse and acute.
  • The perimeter of a trapezoid is given by P = a + b + c + d.
  • The area of a trapezoid is given by A=12(a+b)×h.

Frequently Asked Questions about Trapezoids

A quadrilateral with one set of parallel sides.

The main characteristics of a trapezoid are:

  • it has a pair of parallel sides;
  • it has a pair of adjacent angles formed between one parallel side and one non-parallel side;
  • its diagonals bisect each other;
  • its median is parallel to the parallel sides.

No, not all trapezoids are parallelograms.

A right trapezoid is an example of a trapezoid.

Final Trapezoids Quiz

Question

Find the area of this trapezoid:

study smarter trapezoidTrapezoid (www.draw.io)

Show answer

Answer

 units squared

Show question

Question

Find the area of this trapezoid:

study smarter trapezoidTrapezoid (www.draw.io)

Show answer

Answer

 units squared

Show question

Question

Find the area of the following trapezoid:

study smarter trapezoidTrapezoid (www.draw.io)

Show answer

Answer

 or 

Show question

Question

Find the area of the trapezoid:

study smarter trapezoidTrapezoid (www.draw.io)

Show answer

Answer


Show question

Question

Find the area of this trapezoid:

study smarter trapezoidTrapezoid (www.desmos.com)

Show answer

Answer


Show question

Question

Identify the following trapezoid:

study smarter right angle trapezoidTrapezoid (www.draw.io)

Show answer

Answer

Right-angled (or right) trapezoid

Show question

Question

Identify the following trapezoid:

study smarter isosceles trapezoidTrapezoid (www.draw.io)

Show answer

Answer

Isosceles Trapezoid

Show question

Question

Identify the following trapezoid:

study smarter isosceles trapezoidTrapezoid (www.draw.io)

Show answer

Answer

Isosceles trapezoid

Show question

Question

Find the area of the following trapezoid:

study smarterRight trapezoid (www.draw.io)

Show answer

Answer

 units squared

Show question

Question

Find the area of the following trapezoid:

study smarterRight trapezoid (www.draw.io)

Show answer

Answer

 units squared

Show question

Question

Find the area of the following trapezoid:

Right trapezoid (www.draw.io)

Show answer

Answer

Show question

Question

Identify the following trapezoid:

study smarter acute trapezoidTrapezoid (www.draw.io)

Show answer

Answer

Acute trapezoid

Show question

Question

Identify the following trapezoid:

study smarter scalene trapezoidTrapezoid (www.draw.io)

Show answer

Answer

Scalene trapezoid

Show question

Question

Find the area of the following trapezoid:

study smarter trapeziumScalene trapezoid (www.draw.io)

Show answer

Answer

units squared

Show question

60%

of the users don't pass the Trapezoids quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.