StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
Americas
Europe
Do you know that the Great Pyramid of Giza measures about 146.7 m high and 230.6 m in base length? Can you imagine how many cubes of sugar measuring 1 m3 would be needed to fill the Great Pyramid of Giza? Herein, you shall be learning about how this can be calculated through the knowledge of the volume of pyramids.
Pyramids are 3-dimensional objects with triangular sides or surfaces that meet at a tip called an apex. The name 'pyramid' often brings to mind the Pyramids of Egypt, which is one of the seven wonders of the world.
In geometry, a pyramid is a polyhedron obtained connecting a polygonal base to a point, called the apex.
Pyramids are of various types depending on the shape of their base. A pyramid with a triangular base is called a triangular pyramid, and a rectangular-based pyramid is known as a rectangular pyramid. The sides of a pyramid are triangular and they emerge from its base. They all meet at a point called the apex.
An image showing the various types of pyramids, Njoku - StudySmarter Originals
You may be wondering how many blocks of sand can make up the Egyptian pyramids. The volume of a pyramid is the space enclosed by its faces. Generally, the volume of a pyramid is a-third of its corresponding prism. Its corresponding prism has the same base shape, base dimensions and height. Thus, the general formula for calculating the volume of a pyramid is,
where,
V is the volume of the pyramid
b is the base area of pyramid
h is the height of pyramid
Note that this is the general formula for the volume of all pyramids. Differences in the formulas are based on the shape of the base of the pyramid.
The volume of rectangular pyramids can be found by multiplying a third of the rectangular base area by the height of the pyramid. Therefore:
where;
l is the length of the base
b is the breadth of the base
h is the height of the pyramid
An illustration of the sides of a rectangular pyramid, Njoku - StudySmarter Originals
This means that the volume of a rectangular pyramid is a third of the corresponding rectangular prism.
A square base pyramid is a pyramid whose base is a square. The volume of square-based pyramids can be gotten by multiplying one-third of the square base area by the height of the pyramid. Therefore:
where;
l is the length of the square base
h is the height of the pyramid
An illustration of the sides of a square base pyramid, Njoku - StudySmarter Originals
The volume of triangular base pyramids can be obtained by multiplying one-third of the triangular base area by the height of the pyramid. Therefore:
where;
l is the length of the base
b is the triangular base length
htriangle is the height of the triangular base
hpyramid is the height of the pyramid
An illustration of the sides of a triangular pyramid, Njoku - StudySmarter Originals
The volume of hexagonal base pyramids can be gotten by multiplying one-third of the hexagonal base area by the height of the pyramid. Therefore:
An illustration of the sides of a hexagonal pyramid, Njoku - StudySmarter Originals
A pyramid of height 15ft has a square base of 12 ft. Determine the volume of the pyramid.
Solution
Calculate the volume of the figure below:
Solution
A hexagonal pyramid and a triangular pyramid are of the same capacity. If its triangular base has a length of 6 cm and a height of 10 cm, calculate the length of each side of the hexagon when both pyramids have the same height.
Solution
The first step is to express the relationship in an equation.
According to the problem, the volume of the triangular pyramid equals the volume of the hexagonal pyramid.
Let bt signify the base area of triangular base and bh represent the base area of hexagonal base.
Then:
Multiply both sides of the equation by 3 and divide by h.
This means that the triangular base and the hexagonal base are of equal area.
Recall that we are required to find the length of each side of the hexagon.
Where l is the length of the side of a hexagon.
Recall that bt = bh, then;
Take the roots of both sides of the equation.
Thus each side of the hexagonal base is approximately 3.4 cm.
It is the capacity of a pyramid or the space it contains.
The formula used in calculating the volume of a pyramid is one-third the volume of the corresponding prism.
The volume of a pyramid with a square base is calculated by finding the product of one-third of the area of one of the square bases and the height of the pyramid.
The volume of a pyramid with a triangular base is gotten by multiplying one third of the triangular base area by the height of the pyramid.
Be perfectly prepared on time with an individual plan.
Test your knowledge with gamified quizzes.
Create and find flashcards in record time.
Create beautiful notes faster than ever before.
Have all your study materials in one place.
Upload unlimited documents and save them online.
Identify your study strength and weaknesses.
Set individual study goals and earn points reaching them.
Stop procrastinating with our study reminders.
Earn points, unlock badges and level up while studying.
Create flashcards in notes completely automatically.
Create the most beautiful study materials using our templates.
Sign up to highlight and take notes. It’s 100% free.
Over 10 million students from across the world are already learning smarter.
Get Started for Free