StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

- Flashcards
- Notes
- Explanations
- Study Planner
- Textbook solutions

Mechanics Maths

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Area Between Two Curves
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits at Infinity and Asymptotes
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Radius of Convergence
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Separation of Variables
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Conservation of Mechanical Energy
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Elastic Strings and Springs
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Power
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Work Done by a Constant Force
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Argand Diagram
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- De Moivre's Theorem
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Distribution Function
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Degrees of Freedom
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test for Regression Slope
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Paired T-Test
- Point Estimation
- Probability
- Probability Calculations
- Probability Density Function
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Spearman's Rank Correlation Coefficient
- Standard Deviation
- Standard Error
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- T-distribution
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Variance for Binomial Distribution
- Venn Diagrams

Mechanics is the area of study in physics and mathematics that examines how forces affect a body and its motion. It deals with the movement of physical objects and the relationship between force, mass, and motion. So mechanics studies stationary objects, where the forces acting over them are in equilibrium.

There are two main subsections of mechanics that deal with objects depending on if they are in equilibrium **(statics) **or in movement **(dynamics)** . For objects in motion, it is divided into the study of the forces and their effects (**dynamics**) or the variables of motion **(kinematics)** .

**Kinematics **deals with displacement, time, velocity, and acceleration without considering the forces that cause the objects to move.

A simple example of this is the study of a car in motion. We can observe time, displacement, velocity, and acceleration.

A moving car will have a certain **displacement** . Recording two different moments when moving introduces the concept of **time** . When we combine the two, displacement over time, we have **velocity** . If the car isn't moving at a constant rate, the concept of **acceleration ** (the change of velocity) comes in.

**Dynamics ** is the area of mechanics that studies the forces that cause or modify the movement of an object. Dynamics is divided into linear dynamics and rotational dynamics. The first studies an object moving in linear motion, and the second studies objects that rotate around a fixed center, such as a chair in a carousel.

Dynamics works with concepts such as forces, the mass of the object in motion, its momentum (defined as the velocity multiplied by the object's mass), and energy.

Engineering requires you to apply the principles of mechanics from the point of view of kinematics or dynamics. Multiple applications range from the design of airplanes, bridges, cars, and buildings to the development of rockets for space exploration.

The study of mechanics is linked to quantities, which are the properties you can measure of an object. In an object in motion, the most important properties are the distance an object covers, the time it takes to cover this distance, the speed it has, how the speed changes, and the forces affecting the object.

The quantities to measure use units. Units are standards used for each property we are measuring. Mechanics specifically uses the units for velocity (meters per second or m / s) and forces (Newtons), amongst others.

Another important aspect when dealing with mechanics is the simplification of the systems analyzed. These assumptions allow you to study mechanics by reducing its complexity.

In trying to understand what laws govern specific systems, we will need to quantify the physical elements that are going to be involved in the system.

Anything we can measure is known as a **physical quantity** . For example, if I say I weigh 80kg or the ruler is 30cm, you can assume 80kg is my mass, and 30cm is the length of the ruler. Every physical quantity must have two things:

**magnitude**

For example, if you say 20 kg of salt, 20 is the numerical value of the salt you have. This is not enough to conclude how much salt you have until the unit **kg ** is added. The kilograms, or kg, is a SI unit - an international standard.

Units are necessary to specify the specific amount of what property of the substance we are measuring.

Applying mathematics to real-life events can be complicated. There are so many variables it can be hard to know where to begin. You start by making the problem as simple as you possibly can.

There are certain things you can ignore, including:

Air resistance.

friction

Energy dissipation.

mass distribution.

It's helpful to know some keywords that are used for these assumptions. For example, 'smooth surface' means there is no friction present on the surface, or if a particle has a ' negligible mass', it means you can assume its weight is zero.

Remember, kinematics is an area of study that focuses on the movement of objects, disregarding the forces that cause the movements. This part of mechanics explores the concept of motion, and its relationship with time, velocity, and acceleration. The movements of the objects in kinematics can have a **constant acceleration ** or a **variable acceleration** .

Constant acceleration can also be called one-dimensional equations for motion for constant acceleration. This employs the use of SUVAT equations to find the values of any of the variables. SUVAT is an acronym of the variables to study. They are:

s, displacement in meters [m].

u, initial velocity in meters over seconds [m / s].

v, final velocity in meters over seconds [m/s].

a, acceleration in meters over seconds squared [m / s ^{2} ] .

t, time in seconds [s].

In contrast to constant acceleration, variable acceleration primarily explores motion in objects where acceleration keeps changing. A variable acceleration means a variable velocity.

In mathematics, the formulations found to model the movement of an object are related to a mathematical area of study - **differentiation** .

A typical example is to use the classical SUVAT formulation to calculate the acceleration from the displacement. The first derivation of the displacement will give you the velocity, and if you derive the velocity, you will obtain the acceleration.

If you are given the SUVAT formulation for the acceleration and want to find the displacement, you apply the inverse operation named **integration** . Integrating the acceleration will give you the velocity, and if you integrate the velocity, you will obtain the displacement. Here are the equations:

Projectiles and parabolic motion deal with objects projected through the air, describing a parabola during their movement. An example is throwing a ball.

This part of kinematics employs concepts of mathematics such as trigonometry because of the angles involved in the movements of the objects.

Force can change the motion of an object. A straightforward way to describe force is as a pull or a push against an object. Newton's laws of motion and its mathematical expressions are central to how we describe forces every day.

These laws cover three significant ideas: the reciprocity of forces, the forces altering the state of movement of an object, and how mass, acceleration, and force relate to each other.

Another important aspect of the study of forces is how we use them to move objects and the mechanisms you can create to produce or affect them. Two examples of these mechanisms are pulleys and moments produced by a bar.

Forces can also be present when an object has no movement; one example is the force of gravity on you as you remain standing. The study of forces when an object does not move ( **in equilibrium** ) or change its movement is called **statics** .

Newton came up with three specific laws to describe the motion of an object.

Newton's first law of motion states that an object continues to be in a state of rest or a state of motion at a constant speed along a straight line unless a force acting over the object changes this.

A ball will roll indefinitely if nothing stops it from moving. In this case, the friction against the air and the ground will cause it to stop.

Newton's second law of motion states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it. It can be modeled in an equation as:

Where f is the force in Newtons, m is the mass in kg, and a is the acceleration in m / s ^{2} .

Newton's third law of motion is also called the action and reaction forces law. It states that when a body exerts a force over another, the other body will exert a force equal in magnitude and opposite in direction.

An example is when you push against a hard wall, you will feel a push in the other direction.

A pulley comprises a wheel and a fixed axle, with a groove along the edges to guide a rope or cable. It is not easy to lift heavy objects, so that is where pulleys come in. Put two or more wheels together and run a wheel around them, and there you have an excellent lifting machine. The more pulleys you add to your machine, the more mechanical advantage you have at lifting a load easily.

Pulley system lifting a weight, the system has two pulleys and allows a force F to lift a weight against the gravity force mg

Statics deal with objects at rest and ones that are moving with constant velocity. In this object, forces are in equilibrium, so there is no change to its movement. One example of this is the forces over a building. The building structure is affected by gravity pulling it down, the force is distributed along the building, and the structure reacts to create an equilibrium.

Friction is the force that resists the rolling and sliding of an object over a surface. Friction is a dissipative force, meaning that it can decrease the velocity of the objects in motion.

A moment is a force you apply to something multiplied by the distance between the pivot and the force.

When a force is not enough to turn something around, you will need a pivot, too. Pivots and forces have a special relationship - if you push with the same force further away from the pivot, you can turn the item more easily due to a larger moment.

moment = force distance

In a moment, the distance is the perpendicular distance to the point where you apply the force.

Force F1 will produce Force F2 thanks to the pivot, and the moment will be equal to force F2 per its distance to the pivot

Mechanics is the area of study of physics and mathematics that deals with how forces affect a body in motion or repose.

Kinematics is an area of study that focuses on the movement of objects, disregarding the forces that cause the movements.

Any property we can measure in an object is known as a physical quantity.

Assumptions help reduce the complexities of real-life applications of mechanics by ignoring certain variables.

The influence that can change the state of an object (motion or repose) is referred to as force.

Mass is one significant variable to be considered when exploring the effects of motion in objects, and mass is a central variable in Newton's second law.

Statics deal with objects at rest and ones that are moving with constant velocity. In this case, the forces acting over the objects are at equilibrium.

Dynamics, in contrast, is the section that deals with the forces that put the objects in motion.

Projectiles and parabolic motion study with objects that describe a parabola while moving.

Statics and dynamics.

More about Mechanics Maths

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Over 10 million students from across the world are already learning smarter.

Get Started for Free