StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Systematic Listing

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Point Estimation
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Standard Deviation
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

Suppose we have a PIN number for unlocking a mobile phone. If the PIN number is 4 digits long and each individual digit can be any number from 0-9, what is a methodical and efficient way of listing all the possible combinations of available PIN numbers? This article will explain the systematic listing of outcomes which allows us to easily list all of the outcomes of an event.

**Systematic listing of outcomes** is the process of methodically listing all of the possible outcomes of an event in a way that ensures that no outcome is missed out.

Systematic listing of outcomes allows us to calculate the probability of an event occurring, as all of the possible outcomes are listed. This means that the probability of an event occurring is the number of times that event appears in the listing of outcomes divided by the total number of outcomes. However, this can only be done if the probability of each individual event is equal, for example, if an unbiased coin is flipped or an unbiased dice is rolled.

Systematic listing of outcomes can be done by inspection. This means that using the information from the situation, you decide which way is the best way to systematically list the possible outcomes. Let's take a look at an example to see how this is generally done:

**Szymon is at a restaurant. He orders three-course meal. The options for each course are as follows:**

**Starter: Soup, Breadsticks**

**Main: Pizza, Burger**

**Dessert: Ice Cream, Fruit Salad**

**List all of the possible meals that Szymon could order.**

**Solution:**

A good way to systematically list outcomes is to start by making all but one of the options fixed and list all of the outcomes that can come as a result of it. For example, we can start by listing all of the possible meals that include soup as the starter and pizza as the main. This gives us:

Soup, Pizza, Ice Cream

Soup, Pizza, Fruit Salad

Next, we can change the main to burger, giving us:

Soup, Burger, Ice Cream

Soup, Burger, Fruit Salad

Now we can repeat the process but with breadsticks as the starter.

Breadsticks, Pizza, Ice Cream

Breadsticks, Pizza, Fruit Salad

Breadsticks, Burger, Ice Cream

Breadsticks, Burger, Fruit Salad

This method of listing outcomes is known as the **fundamental principle of systematic listing**. It ensures that no outcome is missed out.

Another way of systematically listing outcomes is by using a **sample space diagram.**

A **sample space diagram** is a table that lists all of the possible outcomes of an event that is decided by a combination of two separate events.

Sample space diagrams are created by creating a table, heading the columns with the outcomes of the first event and the rows with the outcomes of the second event. The boxes are filled with the result of the calculation of the corresponding headers.

Sample space diagrams can be used when a calculation is performed with the two events. An example of this would be if we spun two spinners with numerical values on them and added the result of each outcome. Sample space diagrams are excellent for calculating probabilities of events as the number of outcomes is calculated by:

counting the number of squares containing the desired outcome.

multiplying the number of rows by the number of columns.

dividing the first number by the second number.

**Two six-sided dice are rolled and the numbers obtained from each dice roll are added together. Display all of the possible outcomes with a sample space diagram.**

**Solution:**

The result of each dice is a number from 1 to 6. We will list each of these outcomes in a table:

1 | 2 | 3 | 4 | 5 | 6 | |

1 | ||||||

2 | ||||||

3 | ||||||

4 | ||||||

5 | ||||||

6 |

Each dice roll is added together, so we add up the column and row headings like this:

1 | 2 | 3 | 4 | 5 | 6 | |

1 | 1 + 1 = 2 | 2 + 1 = 3 | 4 | 5 | 6 | 7 |

2 | 1 + 2 = 3 | 4 | 5 | 6 | 7 | 8 |

3 | 4 | 5 | 6 | 7 | 8 | 9 |

4 | 5 | 6 | 7 | 8 | 9 | 10 |

5 | 6 | 7 | 8 | 9 | 10 | 11 |

6 | 7 | 8 | 9 | 10 | 11 | 12 |

When should a systematic listing of outcomes be utilised? When an event is described that has a large number of outcomes or permutations, a systematic listing of outcomes should be used to list all of the possible outcomes. Systematic listing of outcomes is also useful when finding probabilities of certain outcomes. We will look at some examples of situations where the systematic listing of outcomes is appropriate.

**Two three-sided spinners containing the numbers 1, 2, and 3 are rolled and the result of each spin is recorded, forming a 2-digit number. What are the possible numbers that can be made?**

**Solution:**

In this situation, there are 2 digits in the final number and each digit has 6 different possible values, meaning that there are possible numbers that can be made. This is a large number of outcomes so a systematic listing of the outcomes should be used.

We should start by making the first digit as 1, then listing all the possible outcomes like this:

11

12

13

Next, we make the first digit equal to 2 and list the possible outcomes:

21

22

23

Now we repeat this process, by having 3 as the first digit:

31

32

33

**Two six-sided dice are rolled and the results of each dice roll are added together. What is the probability that the dice rolls add to 7?**

**Solution:**

In this situation, we have two events that are being combined to form an outcome, by adding them together. This means that a sample space diagram is perfect here as they are excellent for finding probabilities of outcomes.

Begin by creating a table with headings listing the outcomes of each dice roll:

1 | 2 | 3 | 4 | 5 | 6 | |

1 | ||||||

2 | ||||||

3 | ||||||

4 | ||||||

5 | ||||||

6 |

Next, fill each box with the sum of its respective column and row heading:

1 | 2 | 3 | 4 | 5 | 6 | |

1 | 1 + 1 = 2 | 3 | 4 | 5 | 6 | 7 |

2 | 3 | 4 | 5 | 6 | 7 | 8 |

3 | 4 | 5 | 6 | 7 | 8 | 9 |

4 | 5 | 6 | 7 | 8 | 9 | 10 |

5 | 6 | 7 | 8 | 9 | 10 | 11 |

6 | 7 | 8 | 9 | 10 | 11 | 12 |

In order to find the probability of the result being 7, simply count the number of boxes that contain the number 7, then divide by the total number of boxes, which is the number of rows multiplied by the number of columns.

The probability of the result being 7 is

Why do we use the systematic listing of outcomes? If we simply pick outcomes at random or without method, it is likely that some outcomes may be missed out initially meaning a lot of time is spent listing them, or they may even be missed out completely. Systematic listing of outcomes makes the process of listing the outcome of events as accurate and efficient as possible. The more outcomes there are, the more effective a systematic method of listing becomes. If you wanted to see for yourself the importance of the systematic listing of outcomes, try one of the example questions from this article without using a systematic method and compare how long it takes to list all of the outcomes to a systematic method.

**Systematic listing of outcomes**is the process of methodically listing all of the possible outcomes of an event in a way that ensures that no outcome is missed out.- Systematic listing of outcomes is used when an outcome is made up of a combination of events that result in a large number of possible outcomes.
- Systematic listing of outcomes makes the process of listing the outcome of events as accurate and efficient as possible.
- A
**sample space diagram**is a table that lists all of the possible outcomes of an event that is decided by a combination of two separate events. - Sample space diagrams are created by creating a table, heading the columns with the outcomes of the first event and the rows with the outcomes of the second event. The boxes are filled with the result of the calculation of the corresponding headers.
- Sample space diagrams can be used to calculate probabilities of outcomes by doing the following: counting the number of squares containing the desired outcome, multiplying the number of rows by the number of columns then dividing the first number by the second number.

**Systematic listing of outcomes** is the process of methodically listing all of the possible outcomes of an event in a way which ensures that no outcome is missed out.

Systematic listing of outcomes can be done by inspection. This means that using the information from the situation, you decide which way is the best way to systematically list the possible outcomes.

They can also potentially be solved using a sample space diagam, if the result is formed from a calculation involving two individual events.

More about Systematic Listing

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.