Log In Start studying!

Select your language

Suggested languages for you:
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

Common Factors

Common Factors

So far, we have been introduced to the concept of factorising a given number. Factorising essentially means breaking down a number into a product of its divisors (numbers that do not give a remainder upon dividing). For example, the factors of the number 2 are 1 and 2. On the other hand, 4 has factors 1, 2, and 4. Now, notice how both 2 and 4 have two identical factors: 1 and 2. Could this be a coincidence?

Factors that appear twice upon factoring two numbers are known as common factors. This means that 1 and 2 are common factors of 2 and 4. In this lesson, we shall discuss the concept of a common factor and present a method we can use to identify common factors for a given pair of numbers.

Common factor: Definition

We shall begin this lesson by establishing the meaning of a common factor. Say we are given a pair of whole numbers, x and y. If we can divide these two numbers by a similar digit, then these numbers share a common divisor. This common divisor is known as the common factor of x and y.

Now, let us recall the definition of a factor.

Factors are numbers that can divide another number exactly resulting in a remainder of zero.

Linking this to our current study, we can say that a common factor is a number that divides two (or more) whole numbers precisely without leaving a remainder. We can summarise this definition as follows.

For a given pair of whole numbers (or more), a common factor is a factor shared by both (or all) these numbers.

Simple, right? A common factor must follow two specific rules or conditions: (1) it must be a factor and (2) it must be shared by the two (or all of the) numbers we're dealing with.

Let us continue this discussion by listing several properties of common factors.

Characteristics of common factors

Some notable characteristics of common factors are listed below.

  • Two (or more) numbers can have more than one common factor.

  • A common factor divides two (or more) numbers completely without leaving any remainder.

  • The common factor of two (or more) numbers is always less than the given numbers or equal to one of the given numbers.

  • The number 1 is always a common factor between two (or more) numbers.

  • Every non-zero whole number is a factor of 0 since any non-zero whole number times 0 equals 0.

We can summarise the last point as the following rule:

For any whole number k, if k × 0 = 0 then, 0 ÷ k = 0.

For example, given that 2 x 0 = 0, we have 0 ÷ 2 = 0. Therefore, 2 and 0 are factors of 0.

In the next section, we shall learn how to determine common factors for a given pair of numbers and observe some worked examples that apply this method.

Common factors method

Identifying common factors of two (or more) numbers follows a straightforward two-step method. This is described below.

Step 1: Write down all the factors of the given numbers in separate rows.

Step 2: Compare these lists of factors. Identify the recurring numbers in both lists and note these common factors.

Examples of common factors

Below are several worked examples for finding common factors.

Common factors between two numbers

Find the common factors between 15 and 25.

Solution

Now, following the two-step method we have:

Step 1: List the factors of the given numbers.

Factors of 15: 1, 3, 5, 15

Factors of 25: 1, 5, 25

Step 2: Check for repeating factors.

Looking at the lists above, we see that factors 1 and 5 are present in both lists.

Thus, the common factors of 15 and 25 are 1 and 5.

Based on this result, do you see any of the characteristics of common factors can here? Firstly, notice that both 1 and 5 divide 15 and 25 completely. There is no remainder upon division. Further, observe that the common factors of 15 and 25 happen to be less than both these numbers (1, 5 < 15, 25). Finally, we see that 1 is indeed a common factor between these given numbers.

Common factors between three numbers

Determine the common factors between 12, 16 and 20.

Solution

Again, following the two step-method we have:

Step 1: List the factors of the given numbers.

Factors of 12: 1, 2, 3, 4, 6, 12

Factors of 16: 1, 2, 4, 8, 16

Factors of 20: 1, 2, 4, 5, 10, 20

Step 2: Check for repeating factors.

Looking at the lists above, we see that factors 1, 2 and 4 are present in all three lists.

Thus, the common factors of 12, 16 and 20 are 1, 2 and 4.

Common factors between four numbers

List down the common factors between 26, 52, 78 and 104.

Solution

Step 1: List the factors of the given numbers.

Factors of 26: 1, 2, 13, 26

Factors of 52: 1, 2, 4, 13, 26, 52

Factors of 78: 1, 2, 3, 6, 13, 26, 39, 78

Factors of 104: 1, 2, 4, 8, 13, 26, 52, 104

Step 2: Check for repeating factors.

Looking at the lists above, we see that factors 1, 2, 13, and 26 are present in all four lists.

Thus, the common factors of 26, 52, 78 and 104 are 1, 2, 13 and 26.

Importance of common factors

So why are common factors so necessary? Identifying common factors is actually a step toward our next topic of interest: Highest Common Factors (HCF). The HCF is the largest common factor of two or more numbers. Looking at our worked examples above, can you point out the HCF for each problem? Give it a go!

Common factors can also help us identify prime factors for a given set of whole numbers. Prime factors are factors of a whole number that is also a prime. As we list out the factors of two (or more) numbers and point out their shared divisors, we can subsequently recognise which of these common factors are also prime. In doing so, we can also represent a whole number as a product of primes. This is called prime factorisation which is discussed in more detail in the topic Prime Factorisation.

Knowing that we can conduct prime factorisation on a given number, also means that we can determine the lowest common multiple (LCM) between two (or more) numbers. The LCM is the smallest number that is a multiple of two numbers (or more) numbers. We do so by multiplying the common prime factors shared between a set of given numbers. This is discussed clearly in the article: Lowest Common Multiple.

Do you see how practical finding common factors are? The result allows us to find three other relationships between a given set of numbers: the HCF, prime factorisation and the LCM. Isn't that pretty nifty?

Representing common factors as a Venn diagram

Let us end this topic with two final examples of common factors. However, let's change this up a little. Here, we shall look at finding common factors between two (or more) numbers in the form of a Venn diagram. Representing common factors this way may be helpful when dealing with more than two numbers.

Find the common factors between 39 and 147.

Solution

Let us first list down the factors of 39 and 147.

Factors of 39: 1, 3, 13, 39

Factors of 147: 1, 3, 7, 21, 49, 147

Now, we shall sketch these values in a Venn diagram and note the overlapping factors.

Common Factors Venn diagrams StudySmarterVenn diagrams

From here, we conclude that the common factors of 39 and 147 are 1 and 3.

Find the common factors between 42, 51 and 108.

Solution

Let us first list down the factors of 42, 51 and 108.

Factors of 42: 1, 2, 3, 6, 7, 14, 21, 42

Factors of 51: 1, 3, 17, 51

Factors of 108: 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108

Now, we shall sketch these values in a Venn diagram and note the overlapping factors.

Common Factors Venn diagram showing overlapping factors StudySmarterExample 2 - Overlapping factors in Venn diagrams

From here, we conclude that the common factors of 42, 51 and 108 are 1 and 3.

This Venn diagram also shows that the common factors between 42 and 51 are also 1 and 3 , while 42 and 108 are 1, 2, 3 and 6 and finally 51 and 108 are again 1 and 3.

Common Factors - Key takeaways

  • A common factor is a number that divides a pair of numbers precisely without leaving a remainder.
  • Two numbers can have more than one common factor.
  • Common factors can help us identify the highest common factor.
  • Finding a common factor between two numbers:
    1. Write down the factors of the given numbers.
    2. List down the common (repeating) factors.

Frequently Asked Questions about Common Factors

A common factor is a number that divides a pair of numbers precisely without leaving a remainder. 

  • Two numbers can have more than one common factor

  • A common factor divides two numbers completely without leaving any remainder

  • The common factor of two numbers is always less than the given numbers or equal to one of the given numbers

  • The number 1 is always a common factor between two numbers

  1. Write down the factors of the given numbers
  2. List down the common (repeating) factors

If there's a rule, it is on its own definition: a common factor is a number that (1) must be a factor and (2) must be shared by both (or all) numbers. And to be a factor, it must divide each number precisely without leaving a remainder.

  • The common factors of 15 and 25 are 1 and 5
  • The common factors of 12, 16 and 20 are 1, 2 and 4 
  • The common factors of 26, 52, 78 and 104 are 1, 2, 13 and 26

Final Common Factors Quiz

Question

What is a common factor? 

Show answer

Answer

A common factor is a number that divides a pair of numbers precisely without leaving a remainder

Show question

Question

What are the common factors of 8, 12, 20 and 28? 

Show answer

Answer

1, 2 and 4

Show question

Question

What are the common factors of 68 and 88? 


Show answer

Answer

1, 2 and 4

Show question

Question

What are the common factors of 16 and 18?  


Show answer

Answer

1 and 2

Show question

Question

What are the common factors of 15 and 21?


Show answer

Answer

1 and 3

Show question

Question

What are the common factors of 12 and 16?


Show answer

Answer

1, 2 and 4

Show question

Question

What are the common factors of 24 and 36?

Show answer

Answer

1, 2, 3, 4, 6 and 12

Show question

Question

What are the common factors of 20 and 30?

Show answer

Answer

1, 2, 5 and 10

Show question

Question

What are the common factors of 18 and 27?

Show answer

Answer

1, 3 and 9

Show question

Question

What are the common factors of 6, 12 and 36?

Show answer

Answer

1, 2, 3 and 6

Show question

Question

What are the common factors of 12, 36 and 60? 

Show answer

Answer

1, 2, 3, 4, 6 and 12

Show question

Question

What are the common factors of 24, 60 and 72?

Show answer

Answer

1, 2, 3, 4, 6 and 12

Show question

Question

What are the common factors of 22 and 132?

Show answer

Answer

1, 2 , 11 and 22

Show question

Question

What are the common factors of 36 and 42?

Show answer

Answer

1, 2, 3, and 6

Show question

Question

What are the common factors of 21, 24, 30 and 42?

Show answer

Answer

1 and 3

Show question

More about Common Factors
60%

of the users don't pass the Common Factors quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration