Select your language

Suggested languages for you:
Log In Start studying!
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Parallel Lines

Save Save
Print Print
Edit Edit
Sign up to use all features for free. Sign up now
Parallel Lines

All around us we see many different forms of line, like the edge of the table, corners of floors and ceilings, sides of doors and windows, and so on. But there are some forms of straight lines which go side-by-side in the same direction without intersection. Like both opposite sides of the door in the same face. This type of line is an example of parallel lines.

In this explanation, we will understand the concept of parallel lines and their different properties.

Parallel lines definition

Parallel lines are the types of lines that consists of two or more lines in the same plane.

Two or more straight lines in the same plane which are equidistant (having the same distance between them at all points) and never intersect each other at any point are called parallel lines.

Parallel lines remain at the same distance from each other, no matter how far they are extended. They can be constructed in any direction whether horizontal, vertical, or diagonal. Mathematically, they are represented with the symbol which is called “ is parallel to”.

Parallel lines, parallel lines examples, StudySmarterParallel lines, StudySmarter Originals

Here in the above figure p and q are parallel lines and m and n are parallel lines. Hence it is said thatandBut line a and line b are not parallel to each other as when extending both the lines, they both will intersect each other at some point. So a is not parallel to b (that is).

Parallel lines angles

As parallel lines do not intersect with each other, no angles can be formed between them. But when another line apart from the given parallel lines intersect both the parallel lines then some angles are formed between them.

When any line cuts both the parallel lines at some point in the same plane, then this line is known as transversal.

Parallel lines, transversal, StudySmarterTransversal cutting parallel lines, StudySmarter Originals

Here in the above figure, we can see that line l cuts both the parallel lines a and b. So line l is the transversal line. As the transversal cuts parallel lines it can be seen that the transversal forms pairs of angles with both the lines. There are different types of angles created by transversals.

Corresponding angles

The angles which are formed on the same side of the transversal and on the matching corners of parallel lines are called corresponding angles.

Corresponding angles can be easily identified in the form of an “F” shape. They can be formed anyway either upside down or back and front. Corresponding angles are always equal to each other in parallel lines.

Parallel lines, corresponding angles, StudySmarterCorresponding angles of parallel lines, StudySmarter Originals

Alternate angles

Angles formed on the opposite side of transversal on parallel lines are known as alternate angles.

Alternate angles can be found in the form of a “Z” shape. They can be both interior and exterior angles. Similarly, like corresponding angles, alternate angles can be formed in any direction. Pair of alternate angles are always equal to each other.

Parallel lines, alternate angles, StudySmarterAlternate interior angles of parallel lines, Studysmarter Originals

Here in the above figure, both the angles are alternate interior angles.

Interior angles

Angles formed on the same side of the transversal facing each other on parallel lines are called interior angles.

Interior angles are formed in the shape of a “U”. They can be found on either side of the transversal containing both parallel lines. The sum of interior angles will always be

Parallel lines, Interior angles, StudySmarterInterior angles of parallel lines, StudySmarter Originals

Exterior angles

Angles that are outside the sides of parallel lines but on the same of the transversal are called exterior angles.

Exterior angles are formed in the shape of a “U” but will be located on the outside region of it. And the sum of the pairs of exterior angles will always be

Parallel lines, exterior angles, StudySmarterExterior angles, StudySmarter Originals

Vertically Opposite angles

Angles forming on any one of the parallel lines and transversals which are opposite to each other are called vertically opposite angles.

Vertically opposite angles are found in the form of two “V” touching each other. They only contained any one of the parallel lines for each pair. Vertically opposite angles are equal to each other.

Parallel lines, vertically opposite angles, StudySmarterVertically Opposite angles, StudySmarter Originals

So we can represent all the pairs of angles for all the types of angles as below.

Parallel lines, parallel lines angles, StudySmarterAll pairs of angles in parallel lines, StudySmarter Originals

  • Corresponding angle pairs :
  • Alternate angle pairs :
  • Interior angle pairs :
  • Exterior angle pairs :
  • Vertically opposite angle pairs :

Parallel line equations

Parallel lines are one type of line. So we can represent parallel lines in the form of an equation of the line. We know that in coordinate geometry, the equation of the line can be written in the form of So we can also represent parallel lines in the form of the equation

Here b is the y-intercept, so it can be any value. It is important to remember that as we have two or more lines in parallel lines the value of b for every line should be different from each other. As if they are equal then the equations of all lines will be the same and then it can be considered as one single line.

And m is the gradient or slope of that line. Here contrary to b the value of m for all the parallel lines should be equal. As m represents the slope of the line, if m is different for all parallel lines, then they will intersect each other and would not be considered parallel anymore.

We will understand the concept of gradient and how it can be found soon in the following topic.

Parallel lines, parallel lines equation, StudySmarterParallel lines equation in graph, StudySmarter Originals

Parallel lines gradient

The gradient or slope of parallel lines is the steepness of that line in the graph. The gradient of parallel lines is calculated with respect to the positive x-axis of the graph and parallel lines are inclined with the positive x-axis.

We know from above that the equation for parallel lines is Now suppose that the equation for one line and the equation for the other line is Here are y-intercept and m is the gradient of parallel lines. Then for both the lines to become parallel, the slope of both the lines should be equal. That is This equality can be derived by considering the angle between both the lines.

If we are already given two points on each line of the graph then we can calculate and verify the slope using the formula:

whereare the x-axis and y-axis points for the single line.

Parallel lines examples

Let us see some parallel line examples and understand how to find angles and the slope in parallel lines.

In the given figure m and n are parallel lines and l is the transversal cutting both the parallel lines. Then find the value of x ifis given.

Parallel lines theorem, parallel lines examples, StudySmarterParallel lines with transversal, StudySmarter Originals

Solution:

We are already given that lines m and n are parallel to each other and line l is transversal to m and n.

So from the figure, we can clearly see that and are interior angles as they form the shape "U".

As both the angles are interior angles we know that their sum is equal to

Find the value offrom the given figure ifis given. Also line a, b, and c are parallel lines cut by the transversal t.

Parallel lines, parallel lines examples, StudySmarterParallel lines with missing angles, StudySmarter Originals

Solution:

It is given that lines a,b and c are parallel to each other, and line t acts as a transversal to these three lines.

First, we find the value of. We can see in the figure thatand angles forms a "U" shape. So both the angles and are interior angles. So the sum of both these angles will be

Nowandare vertically opposite angles. So both the angles will be equal to each other.

Now from the figure we can see that and forms a "F" shape, so they are corresponding angles. And hence they are equal to each other.

Hence the value of both angles are

Check whether the given lines are parallel lines or not.

Solution:

a) Here we are given two equations of lines Now comparing them with the general equation of parallel lineswe get that Hereare the gradients of parallel lines andare the y-intercepts.

As we know that for lines to be parallel, the gradients should be equal. And we can clearly see in the above equations that Also note that the valuesare different. Hence both the lines are parallel lines.

b) Here the equations of lines are given as Comparing it with the general equation of parallel lines we get that

As here we get thatwe can instantly say that both the given lines are not parallel to each other.

Parallel Lines - Key takeaways

  • Two or more straight lines in the same plane which are equidistant (having the same distance between them at all points) and never intersect each other at any point are called parallel lines.
  • The angles which are formed on the same side of the transversal and on the matching corners of parallel lines are called corresponding angles.
  • Angles formed on the opposite side of transversal on parallel lines are known as alternate angles.
  • Angles formed on the same side of the transversal facing each other on parallel lines are called interior angles.
  • Angles that are outside the sides of parallel lines but on the same of the transversal are called exterior angles.
  • Angles forming on any one of the parallel lines and transversals which are opposite to each other are called vertically opposite angles.
  • The equation of the parallel line iswhere the slope m of both the lines should be equal.

Frequently Asked Questions about Parallel Lines

Two or more straight lines in the same plane which are equidistant (having the same distance between them at all points) and never intersect each other at any point are called parallel lines.

  • Alternate angles should be equal
  • Corresponding angles should be equal
  • Vertically opposite angles should be equal.

Angles in parallel lines are alternate angles, corresponding angles, interior angles, exterior angles, and vertically opposite angles.

Examples of parallel are railway tracks, opposite edges of doors and windows.

The gradient of parallel lines can be calculated using line equation y=mx+b for each line such that m1 = m2.

Final Parallel Lines Quiz

Question

What are parallel lines?

Show answer

Answer

Two or more straight lines in the same plane which are equidistant (having the same distance between them at all points) and never intersect each other at any point are called parallel lines.

Show question

Question

Can parallel lines contain more than two lines? 

Show answer

Answer

Yes

Show question

Question

Perpendicular lines and parallel lines are equal.

Show answer

Answer

True

Show question

Question

What is the line cutting the parallel lines called?

Show answer

Answer

Transversal line

Show question

Question

Which of the following is/are the condition/s for parallel lines?

Show answer

Answer

Equal distance between lines

Show question

Question

The gradient/slope of parallel should always be equal.

Show answer

Answer

True

Show question

Question

For which of the following, the pair of angles are not equal?

Show answer

Answer

Corresponding angles

Show question

More about Parallel Lines
60%

of the users don't pass the Parallel Lines quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.