StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Polynomial Graphs

- Calculus
- Absolute Maxima and Minima
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Disk Method
- Divergence Test
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Improper Integrals
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Differential Equation
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- One-Sided Limits
- Optimization Problems
- P Series
- Particular Solutions to Differential Equations
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Tangent Lines
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal´s Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Rounding
- SAS Theorem
- SSS Theorem
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Comparing Data
- Conditional Probability
- Correlation Math
- Cumulative Frequency
- Data Interpretation
- Discrete Random Variable
- Distributions
- Events (Probability)
- Frequency Polygons
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Testing
- Large Data Set
- Linear Interpolation
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Random Variables
- Sampling
- Scatter Graphs
- Single Variable Data
- Standard Deviation
- Standard Normal Distribution
- Statistical Measures
- Tree Diagram
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

**Polynomial graphs **are graphical representations of polynomial functions. **Polynomials **are expressions involving multiple terms that contain a variable raised to a series of positive whole number powers. Each term may also be multiplied by coefficients.

Polynomial functions follow the standard form:

The highest exponent present in a polynomial determines the **degree of the polynomial**.

is a polynomial of degree 2

is not a polynomial because it has a negative exponent

In the Graphs article, we looked at how to graph different types of polynomial functions (line graphs, quadratic, cubic, and quartic functions) but only based on the points where the curve crosses the x and y axes. However, as the behaviour of higher exponent functions is not as predictable as lines or parabolas, to get a more accurate representation of their curve, we need to use some key features.

1. **Find the zeros:** The zeros of a function are the values of x that make the function equal to zero. They are also known as **x-intercepts**.

To find the zeros of a function, you need to set the function equal to zero and use whatever method required (factoring, division of polynomials, completing the square or quadratic formula) to find the solutions for x. Please refer to the Polynomials article if you need a reminder of this.

After doing polynomial division and factoring of the polynomial function, we get the result .

Based on this, the **zeros or x-intercepts** are:

, and

If a zero appears as part of the solution twice (it is repeated), then the curve of the function will touch the x-axis at that value of x, and then bounce off the x-axis changing its direction.

2. **Find the turning points (local maximum or minimum):** To find the highest point (local maximum) and the lowest point (local minimum) in a particular section of the curve where it changes direction, you should proceed as follows:

Find the derivative of the polynomial function using the power rule .

Make the function equal to zero to find the x-coordinates of the turning points. You can do this by factoring, completing the square or using the quadratic formula.

After this, you need to substitute the resulting values of x into the original function to find the y-coordinate of the turning points.

The derivative of is

Now we need to find the x-coordinates of the turning points:

This polynomial cannot be factored, so let's use the quadratic formula

From the function, we can identify that , and

Simplify by 2

We have two solutions, which are the x-coordinates of the turning points:

- Now we substitute the resulting values of x of into the original function to find the y-coordinate of the turning points:

The **turning points** are:

Local maximum =

Local minimum =

3. **Find the y-intercept:** Substitute x = 0 in the original polynomial function. The result will be the y-coordinate where the curve crosses the y-axis.

The point where the curve of the function crosses the y-axis is (0, -12)

4. **End Behaviour:** The curves of polynomials that have a degree of 2 or more are continuous and smooth lines that can have maximum or minimum points where they change direction in the middle section of the curve, and on either end of the curve they tend to go towards positive or negative infinity.

**How do you determine the end behaviour of a function?**

**Leading Coefficient Test:** The **leading term of a polynomial **is the term with the highest exponent. You will need to look at whether its exponent is even or odd and the sign of its coefficient to help you determine the end behaviour of the curve.

**Odd function**(i.e. )

a) **Positive leading coefficient:** In this case, the function will point downwards on the left and point up on the right end of the curve.

b) **Negative leading coefficient:** In this case, the function will point up on the left and point down on the right end of the curve.

**Even function**(i.e. )

a) **Positive leading coefficient:** In this case, the function will point upwards on both ends of the curve.

b) **Negative leading coefficient:** In this case, the function will point downwards on both ends of the curve.

Odd function | Even function | |||||||

Sign of the Leading Coefficient | Positive | Negatives | Positive | Negatives | ||||

End Behaviour | Left | Right | Left | Right | Left | Right | Left | Right |

↓ | ↑ | ↑ | ↓ | ↑ | ↑ | ↓ | ↓ |

The leading term of the polynomial function is , which means that it is an **odd function **with a **positive leading coefficient. **Therefore, the end behaviour of the curve will be like this:

Left | Right |

↓ | ↑ |

5. **Sketch the curve of the function**.

There are different types of polynomial graphs according to their degree.

Notice that the degree of a polynomial matches the number of direction changes in their graph and the number of zeros or x-intercepts.

Degree 1 - Linear | Degree 2 - Quadratic |

Degree 3 - Cubic | Degree 4 - Quartic |

Degree 5 - Quintic | Degree 6 |

If you are given the graph of a polynomial function, you can find the equation of the polynomial function by following these steps:

Identify the zeros or x-intercepts (values of x where the curve crosses or touches the x-axis).

Write the factors of the function using the zeros identified (make sure that you change the sign of the zeros when you write them as factors). For example, if b is a root, then is a factor of the function.

Any repeated factors can be written as .

Find the value of the stretch factor using the y-intercept.

Find the equation of the polynomial function represented by the following graph:

1. The zeros or x-intercepts are:

, and

2. The factors are:

3.

The y-intercept is (0, -12), so you need to substitute those values in to find the value of the stretch factor .

, therefore the equation of the polynomial function is:

You can leave it like this, or expand brackets and combine like terms to get the standard form of the polynomial function, like this:

expand the first two brackets first

Polynomial graphs are graphical representations of polynomial functions.

Some key features of polynomial graphs are the number of zeros or x-intercepts, the repeated zeros, the turning points, the y-intercept, the type of function (odd or even), the sign of the leading coefficient, and the end behaviour of the curve.

There are different types of polynomial graphs according to their degree.

The degree of a polynomial matches the number of direction changes in their graph and the number of zeros or x-intercepts.

It is possible to find the equation of a polynomial function from its graph.

Polynomial graphs are graphical representations of polynomial functions.

To graph polynomial functions follow these steps:

- Find the zeros using whatever method required (factoring, division of polynomials, completing the square or quadratic formula).
- Find the turning points (local maximum or minimum).
- Find the y-intercept.
- Carry out the leading coefficient test to find the end behaviour of the polynomial function.
- Sketch the function.

To find the equation of the polynomial function from its graph, follow these steps:

- Identify the zeros or x-intercepts (values of x where the curve crosses or touches the x-axis.
- Write the factors of the function using the zeros identified (make sure that you change the sign of the zeros when you write them as factors).
- Any repeated factors can be written as (x± b)².
- Find the value of the stretch factor (a) using the y-intercept.

More about Polynomial Graphs

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.