Select your language

Suggested languages for you:
Log In Start studying!
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Polynomial Graphs

Save Save
Print Print
Edit Edit
Sign up to use all features for free. Sign up now
Polynomial Graphs

Polynomial graphs are graphical representations of polynomial functions. Polynomials are expressions involving multiple terms that contain a variable raised to a series of positive whole number powers. Each term may also be multiplied by coefficients.

Polynomial functions follow the standard form:

The highest exponent present in a polynomial determines the degree of the polynomial.

is a polynomial of degree 2

is not a polynomial because it has a negative exponent

In the Graphs article, we looked at how to graph different types of polynomial functions (line graphs, quadratic, cubic, and quartic functions) but only based on the points where the curve crosses the x and y axes. However, as the behaviour of higher exponent functions is not as predictable as lines or parabolas, to get a more accurate representation of their curve, we need to use some key features.

Key features of polynomial graphs

1. Find the zeros: The zeros of a function are the values of x that make the function equal to zero. They are also known as x-intercepts.

To find the zeros of a function, you need to set the function equal to zero and use whatever method required (factoring, division of polynomials, completing the square or quadratic formula) to find the solutions for x. Please refer to the Polynomials article if you need a reminder of this.

After doing polynomial division and factoring of the polynomial function, we get the result .

Based on this, the zeros or x-intercepts are:

, and

If a zero appears as part of the solution twice (it is repeated), then the curve of the function will touch the x-axis at that value of x, and then bounce off the x-axis changing its direction.

2. Find the turning points (local maximum or minimum): To find the highest point (local maximum) and the lowest point (local minimum) in a particular section of the curve where it changes direction, you should proceed as follows:

  • Find the derivative of the polynomial function using the power rule .

  • Make the function equal to zero to find the x-coordinates of the turning points. You can do this by factoring, completing the square or using the quadratic formula.

  • After this, you need to substitute the resulting values of x into the original function to find the y-coordinate of the turning points.

  • The derivative of is

  • Now we need to find the x-coordinates of the turning points:

This polynomial cannot be factored, so let's use the quadratic formula

From the function, we can identify that , and

Simplify by 2

We have two solutions, which are the x-coordinates of the turning points:

  • Now we substitute the resulting values of x of into the original function to find the y-coordinate of the turning points:

The turning points are:

Local maximum =

Local minimum =

3. Find the y-intercept: Substitute x = 0 in the original polynomial function. The result will be the y-coordinate where the curve crosses the y-axis.

The point where the curve of the function crosses the y-axis is (0, -12)

4. End Behaviour: The curves of polynomials that have a degree of 2 or more are continuous and smooth lines that can have maximum or minimum points where they change direction in the middle section of the curve, and on either end of the curve they tend to go towards positive or negative infinity.

How do you determine the end behaviour of a function?

Leading Coefficient Test: The leading term of a polynomial is the term with the highest exponent. You will need to look at whether its exponent is even or odd and the sign of its coefficient to help you determine the end behaviour of the curve.

  • Odd function (i.e. )

a) Positive leading coefficient: In this case, the function will point downwards on the left and point up on the right end of the curve.

Polynomial Graphs End Behavior odd function positive coefficient StudySmarterEnd Behaviour - odd function and positive coefficient, Marilú García De Taylor - StudySmarter Originals

b) Negative leading coefficient: In this case, the function will point up on the left and point down on the right end of the curve.

Polynomial Graphs End Behavior odd function negative coefficient StudySmarterEnd Behaviour - odd function and negative coefficient, Marilú García De Taylor - StudySmarter Originals

  • Even function (i.e. )

a) Positive leading coefficient: In this case, the function will point upwards on both ends of the curve.

Polynomial Graphs End Behavior even function positive coefficient StudySmarterEnd Behaviour - even function and positive coefficient, Marilú García De Taylor - StudySmarter Originals

b) Negative leading coefficient: In this case, the function will point downwards on both ends of the curve.

Polynomial Graphs End Behavior even function negative coefficient StudySmarterEnd Behaviour - even function and negative coefficient, Marilú García De Taylor - StudySmarter Originals

Odd functionEven function
Sign of the Leading CoefficientPositiveNegativesPositiveNegatives
End BehaviourLeftRightLeftRightLeftRightLeftRight

The leading term of the polynomial function is , which means that it is an odd function with a positive leading coefficient. Therefore, the end behaviour of the curve will be like this:

LeftRight

5. Sketch the curve of the function.

Polynomial Graphs Polynomial graph sketch example StudySmarterSketch of a polynomial graph example, Marilú García De Taylor - StudySmarter Originals

What are the different types of polynomial graphs?

There are different types of polynomial graphs according to their degree.

Notice that the degree of a polynomial matches the number of direction changes in their graph and the number of zeros or x-intercepts.

Degree 1 - LinearDegree 2 - Quadratic
Polynomial Graphs Degree 1 linear StudySmarterPolynomial Graphs Degree 2 quadratic StudySmarter
Degree 3 - CubicDegree 4 - Quartic
Polynomial Graphs Degree 3 cubic StudySmarterPolynomial Graphs Degree 4 quartic StudySmarter
Degree 5 - QuinticDegree 6
Polynomial Graphs Degree 5 quintic StudySmarterPolynomial Graphs Degree 6 StudySmarter

How do you find the equation of a polynomial function from its graph?

If you are given the graph of a polynomial function, you can find the equation of the polynomial function by following these steps:

  1. Identify the zeros or x-intercepts (values of x where the curve crosses or touches the x-axis).

  2. Write the factors of the function using the zeros identified (make sure that you change the sign of the zeros when you write them as factors). For example, if b is a root, then is a factor of the function.

  3. Any repeated factors can be written as .

  4. Find the value of the stretch factor using the y-intercept.

Find the equation of the polynomial function represented by the following graph:

Polynomial Graphs Finding equation polynomial graph StudySmarterFinding the equation of a polynomial graph, Marilú García De Taylor - StudySmarter Originals

1. The zeros or x-intercepts are:

, and

2. The factors are:

3.

The y-intercept is (0, -12), so you need to substitute those values in to find the value of the stretch factor .

, therefore the equation of the polynomial function is:

You can leave it like this, or expand brackets and combine like terms to get the standard form of the polynomial function, like this:

expand the first two brackets first

Polynomial Graphs - Key takeaways

  • Polynomial graphs are graphical representations of polynomial functions.

  • Some key features of polynomial graphs are the number of zeros or x-intercepts, the repeated zeros, the turning points, the y-intercept, the type of function (odd or even), the sign of the leading coefficient, and the end behaviour of the curve.

  • There are different types of polynomial graphs according to their degree.

  • The degree of a polynomial matches the number of direction changes in their graph and the number of zeros or x-intercepts.

  • It is possible to find the equation of a polynomial function from its graph.

Frequently Asked Questions about Polynomial Graphs

Polynomial graphs are graphical representations of polynomial functions.

To graph polynomial functions follow these steps:

  1. Find the zeros using whatever method required (factoring, division of polynomials, completing the square or quadratic formula).
  2. Find the turning points (local maximum or minimum).
  3. Find the y-intercept.
  4. Carry out the leading coefficient test to find the end behaviour of the polynomial function.
  5. Sketch the function.


To find the equation of the polynomial function from its graph, follow these steps:

  1. Identify the zeros or x-intercepts (values of x where the curve crosses or touches the x-axis.
  2. Write the factors of the function using the zeros identified (make sure that you change the sign of the zeros when you write them as factors).
  3. Any repeated factors can be written as (x± b)².
  4. Find the value of the stretch factor (a) using the y-intercept.


Examples of polynomial graphs include: degree 1 - linear, degree 2 - quadratic, degree 3 - cubic, and degree 4 - quartic.

Some key features of polynomial graphs are: the number of zeros or x-intercepts, the repeated zeros, the turning points, the y-intercept, the type of function (odd or even), the sign of the leading coefficient, and the end behaviour of the curve.

Final Polynomial Graphs Quiz

Question

What are polynomial graphs?

Show answer

Answer

Polynomial Graphs are graphical representations of polynomial functions.

Show question

Question

What is the degree of a polynomial?


Show answer

Answer

The degree of a polynomial is the highest exponent present in a polynomial.

Show question

Question

What are the key features of polynomial graphs?


Show answer

Answer

Some key features of polynomial graphs are: the number of zeros or x-intercepts, the repeated zeros, the turning points, the y-intercept, the type of function (odd or even), the sign of the leading coefficient, and the end behaviour of the curve.

Show question

Question

What is the leading coefficient test?


Show answer

Answer

The leading term of a polynomial is the term with the highest exponent. The leading coefficient test involves looking at whether its exponent is even or odd, and the sign of its coefficient to help you determine the end behaviour of the curve.

Show question

Question

What are the zeros or x-intercepts of a polynomial function?


Show answer

Answer

The zeros or x-intercepts of a function are the values of x that make the function equal to zero.

Show question

Question

What methods are used to find the zeros of a polynomial function?


Show answer

Answer

Some of the methods that can be used to find the zeros of a polynomial function are factoring, division of polynomials, completing the square or quadratic formula.

Show question

Question

What happens when a zero appears as part of the solution of a polynomial function twice?


Show answer

Answer

In this case, the curve of the function will touch the x-axis at that value of x, and then bounce off the x-axis changing its direction.

Show question

Question

What is the y-intercept of a polynomial function?


Show answer

Answer

The y-intercept of a polynomial function is the y-coordinate where the curve crosses the y-axis.

Show question

Question

What are the steps to graph polynomial functions?


Show answer

Answer

To graph polynomial functions follow these steps:

  1. Find the zeros using whatever method required (factoring, division of polynomials, completing the square or quadratic formula).
  2. Find the turning points (local maximum or minimum).
  3. Find the y-intercept.
  4. Carry out the leading coefficient test to find the end behaviour of the polynomial function.
  5. Sketch the function.


Show question

Question

What are the types of polynomial graphs?


Show answer

Answer

There are different types of polynomial graphs according to their degree. They can be classified as polynomial graphs of degree 1 - linear, 2 - quadratic, 3 - cubic, 4 - quartic, 5 - quintic, 6, and so on. The degree of a polynomial matches the number of direction changes in their graph, and the number of zeros or x-intercepts.

Show question

60%

of the users don't pass the Polynomial Graphs quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.