StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Quadratic functions

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Point Estimation
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Standard Deviation
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

In everyday life, one comes across various types of motions of objects, such as the trajectory of a basketball or a volleyball, etc. Such trajectories are in the shape of a ‘parabola’, a curve that can be modeled using a **Quadratic Equation of single variable, **and such equations of single variables are **Quadratic Functions. **

Quadratic equations are applied to a variety of practical problems, such as monitoring the path of a projectile, predicting a financial stock model, statistical mechanics, and so on. The part of the equation ax^{2} is known as the quadratic part, bx as the linear part, and c as the constant part of the function.

The graph of every Quadratic function is called a parabola.

A **parabola** is a set of points equidistant from a point and a line.

where the point is called the Focus of a parabola and the line is known as the directrix. Another important point on the parabola is called the Vertex of the parabola. It is the point where the axis of symmetry of a parabola meets the parabola.

Here the axis of symmetry is an imaginary line and the function replicates itself on either side of the line. The graph of a parabola is like a mirror image of a curve, below is a diagram to illustrate this,

Here is what the graph of a quadratic function looks like, which is the quadratic function. It can be seen that the curve on the right side of the blue line and the other side of that line, are exactly the same. In mathematical terms, we say that the graph is symmetrical along that blue line. That is why that line is called the axis of symmetry. It is important to note that the axis of symmetry is an imaginary axis, it is not a part of the graph plotted.

It can be seen that the axis of symmetry is parallel to the y-axis and so we say that the parabola is symmetrical to the y-axis. And the point where the parabola meets the axis of symmetry is known as the **Vertex** of the parabola. It is also the minima of the function. In other words, a vertex is a point where the value of the quadratic function is minimum, hence the name, minima. In the above diagram, point A is the vertex of the parabola.

And for the parabola , the axis of symmetry turns out to be which is symmetrical to y-axis.

There is another crucial point on the parabola, which is the y-intercept of the parabola. It is the point where the parabola meets the y-axis, i.e. where it intercepts the y-axis. Hence, the word, y-intercept. In the above diagram, point C is the y-intercept of the parabola. To find out the coordinates of C, all we need to do is calculate y at x=0. We get,

which gives y=c. Hence, the coordinates of C are (0,c).

We can write quadratic function equations in 3 different forms. Let's look at them in more detail

There are three commonly used forms of quadratic functions.

**Standard or General Form**:**Factored or Intercept Form**:**Vertex Form**:

Each of these forms can be used to determine different information about the path of a projectile. Understanding the benefits of each form of a quadratic function will be useful for analyzing different situations that come your way.

As the name suggests, the **general form** is what most quadratic functions are in. The** intercept form **is useful to easily read off the x and y intercepts of the given curve. The **vertex form **is especially used when the vertex of the curve has to be read off and determine the related properties.

Quadratic equations in one variable are equations that can be expressed in the form

This is the shape of a **parabola**, as seen in the image below.

Essentially, these are the equations that have a degree more than Linear equations. Linear equations have a degree of one and quadratic equations have a degree of 2. Here a, b, and c are constants where a≠0. If a=0, then we would only have , which is a linear equation.

So the condition to form a quadratic equation should be that the coefficient of x^{2} should be non-zero. The other constants b and c can be zero as they won’t affect the degree of the equations.

The general form of a quadratic may not be the most convenient form to work with, and so we have the **Vertex form of a Quadratic Equation**. As the name suggests, it is a form based upon the vertex of the parabola formed by the quadratic equation. The vertex is the most important point of a parabola, using which, we can construct the parabola.

The **Vertex Form of a Quadratic Equation **is given as follows:

where the vertex of the parabola lies at the point (h,k). This form is especially useful when we are given the coordinates of the vertex and are asked to find the equation of the parabola.

The **Factored Form of a Quadratic Equation **is a form where the quadratic is factored into its linear factors. Just as we had the vertex form to identify the vertex of a parabola formed by the quadratic equation, the factored form is used to identify the intercepts of the parabola formed.

The **Factored or Intercept Form of a Quadratic Equation **is given as follows:

where the two x-intercepts are given by . This can be easily verified by setting y=0 and finding the roots of the quadratic equation. Alternatively, one can use the given x-intercepts and a point on the parabola to figure out the quadratic equation.

Let's practice identifying quadratic functions!

Which of the following are quadratic functions?

(i) (ii) (iii)

**Solution: **

Recognize the highest degree of each of the functions, if the highest degree is 2 then only it is a quadratic function.

(i)

It can be seen that the highest degree of this function is and it is trivial that and so it is NOT a quadratic function.

(ii)

It is clear that the highest degree of this function is 2 and hence it is a Quadratic function.

(iii)

One can see that the second term has a degree 2 but only the highest degree should be taken into consideration which is 3, and so it is NOT a quadratic function.

Quadratic functions are a generalized form of quadratic equations. When for the quadratic function defined earlier, for some real constant d then the equation formed is known as a Quadratic equation. In general form, a quadratic equation has the form,

where and where represents the set of real numbers. The solution of a quadratic equation is the value of x for which the equation is satisfied. In other words, the solution of a quadratic function is the value of x for which f(x)=0.

We already know that a linear equation has a unique solution, in the case of quadratic equations, there are always two solutions. The solutions need not be unique, they can be the same and solutions may even be complex. However, we will be looking at real solutions and not complex one.

The solutions are also called the zeros of a function. They should not be confused as they are the same thing. To find the zeros, we can simply solve the quadratic using the quadratic formula for zeros, and we get

For practice on how to solve quadratic equations, see our article on Solving quadratic equations and Graph and solve quadratic equations.

Given that a function is Bijective (Injective and Surjective), the inverse exists. For a quadratic function, which is bijective, the inverse of it can be easily calculated. Every inverse is related to the function as follows,

To find the inverse of , we first equate the RHS to y,

The aim is to solve the above quadratic equation in terms of x, i.e., solve for x and express x in terms of y. The above equation can be rearranged to get,

which is quadratic in x, and we can find its roots using the quadratic formula, which gives us,

which is the inverse of y,

Now replacing the variable y with x, we get the inverse in x

where b^{2}+4ax > 4ac for real values of the function.

- A quadratic function is a function whose highest power is 2. That is the highest degree of the equation is 2.
- The graph of a quadratic function is called a
**parabola**, with a parent equation of . - The solutions (zeros or roots) of a quadratic equation can be calculated using the quadratic formula or factoring the equation into its linear factors.
- Each quadratic equation has two zeros (they need not be unique). They can be real or imaginary.
- The graph of a quadratic function is a parabola that can have its axis of symmetry on the y-axis or x-axis.
- A parabola is defined as the set of points equidistant from a point and a line.
- One can find the axis of symmetry and the coordinates of the vertex by setting the y=0 and x=0 respectively.

^{2}+bx+c using the formula -b/2a, then substitute this value of x in the original quadratic equation to get the value of y coordinate of the vertex.

^{2}+bx+c can be found by plugging y=0 in the equation. That is ax^{2}+bx+c=0

The factored form of the quadratic equation is y=a(bx+c)(dx+e)

More about Quadratic functions

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.