StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Ratio

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Roots of Unity
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Estimator Bias
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Point Estimation
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residual Sum of Squares
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Skewness
- Standard Deviation
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Sum of Independent Random Variables
- Survey Bias
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

Many times when we are given our share of chocolates or cookies, we want to know how these were shared among us and our siblings or friends.

The concept of** ratio** which would be discussed herein would assist you in determining that henceforth.

Ratio is the comparison of two or more quantities by showing the relationship in their various sizes. It tells us how much of a quantity can be found in another quantity.

Ratios show us the relationship between quantities, and it is essential when things are to be shared or divided amongst a group.

Ratios can be expressed in their simplest forms or simplified when they are divided by the highest common factors.

It is worthy of note that ratio comparison may be between quantities individually as a whole or perhaps between a part of a whole and its whole. This would be explained hereafter.

Ration notation tells us the various ways ratios can be represented or expressed. There are three notations for ratio: number notation, word notation, and fraction notation.

Number notation occurs when ratios are expressed by writing numbers and a colon (**:**) between the numbers or a slash (**/**).

For example,

Word notation occurs when the word "is to" is used in expressing rations.

For example,

3 is to 4

5 is to 6 is to 1

2 is to 7

7 is to 2 is to 11 is to 15.

Fraction notation occurs when ratios are expressed as fractions. However, this is only applicable when comparing just two quantities.

For example,

The ratio formula is the expression used in calculating ratios. The general principle guiding ratio operation and its formula is **division**. Earlier we mentioned that ratios can be either in as **a relationship between whole quantities or between a part of a whole and its whole**. This as a matter of fact determines the kind of formula to be applied.

In order to find the **ratio between two whole quantities**, we apply the quotient between the first and the second quantity. This means that the first quantity is divided by the second quantity.

The first quantity is known as the **antecedent** while the second is called the **consequent**. So if the first quantity is m and the other quantity is n, then,

Henderson and Robinson have each been given 5 oranges and 7 oranges respectively, find the ratio of oranges between Henderson and Robison.

**Solution**

Henderson has 5 oranges while Robinson has 7 oranges.

Therefore, the ratio of oranges between Henderson and Robinson is

In order to find the** ratio between a part and a whole**, we apply **the quotient between a part and a whole**. Note that sometimes the total quantities may be given, other times, we would need to calculate it by finding the sum of the parts.

For instance, if m is a part of t, where t is the whole or total of the quantities, the ratio of m to t is,

Meanwhile, the ratio of m to the sum of the quantities m, n and o,

where m + n + o is the total number of quantities.

Out of 6 packs of sweets in a box, Doyle was given 5. What is the ratio of Doyle's share to the sweets in the box?

**Solution**

The total packs of sweets in the box is 6, while Doyle's share of sweets is 5.

Therefore, the ratio of Doyle's share to the sweets in the box is

A bag contains 3 black balls, 2 red balls and 7 white balls. What is the ratio of white balls to all balls in the bag?

**Solution**

We first identify what ratio are we calculating. In this case it is white balls ratio to all balls.

Next, we are told that the bag contains 7 white balls.

Next, we find the total number of balls in the bag,

Now having found their values, we express them in ratio,

.

Ratio scale is obtaining equivalent ratios while multiplying or dividing with constants.

While maintaining the same ratio, we can increase or decrease measurements of geometric shapes.

In the illustration below, the length of the rectangle is 4 units while the width is 2 units, thus,

Now notice that the same rectangle was increased and decreased in measurements with respect to the two other rectangles beside it: here we applied respectively scaling to the initial rectangle.

There are two types of scaling: **scaling u****p** and **scaling down**.

We scale up a ratio by multiplying the antecedent and the consequent by the same number c, where c is greater than 1.

When this occurs, we say the ratio has been **scaled up**. The number c is also known as the **scaling factor** or **multiplier**.

In the above diagram the measurements of the obtained rectangle are multiplied by 2, the ratio of the original rectangle and the scaled up rectangle are equivalent.

We scale down a ratio by dividing the antecedent and the consequent with the same number d, where d is greater than 1.

When this occurs, we say the ratio has been **scaled down**. The number d is also known as the **scaling factor** or **multiplier**.

In the above diagram the measurements of the obtained rectangle are divided by 2, the ratios of the original rectangle and the scaled down rectangle are equivalent.

The length and breadth of a rectangular block is 9cm and 7cm respectively. What would be its new dimensions if scaled up by 5?

**Solution**

We first find the ratio of length to breadth. Thus,

The ratio is scaled up 5. So, we multiply the ratio by 5;

Therefore the new dimensions of the rectangular block are 45cm (length) and 35cm (breadth).

Proportion compares and gives the relationship between two ratios. It is expressed with an equal to sign (**=**) or a double colon (**::**).

Thus, for two ratios a:b and c:d, their proportion is given by

or

We distinguish two types of proportions: direct proportion and indirect proportion.

A direct proportion occurs when an increase in a quantity leads to an increase in the other related quantity.

An inverse proportion occurs when an increase in a quantity leads to a decrease in the other related quantity.

Ratios differ from proportions in the following ways.

1. Ratios are comparisons between quantities meanwhile proportions are comparisons between ratios.

2. Ratios are expressions in the form,

However, proportions are equations in the form,

3. Ratios are represented with just a single colon (:) or a slash (/) while proportions are represented with a double colon (::) or an equal to sign (=).

4. Ratios are mentioned with the phrase "is to" whereas proportions are identified with the phrase "out of".

Some examples hereafter would elaborate more on the relationship as well as the differences in the application of ratio and proportion.

If 5 pairs of a brand shoe cost £120, how many pair(s) of the same brand shoe would Thomas with £48 buy?

**Solution**

We first determine what type of proportion we have. In order to do so, we answer this question: if the number of shoes increases would we have to pay more or less?

Your answer would tell you if it is a direct or inverse proportion.

The answer is YES. Surely, more shoes will require more money, thus this is a direct proportion.

The next thing is to write out your values,

5 pairs for £120

Next, assign a letter to the unknown value. Thus, let y represent the number of shoes Thomas would buy. Thus we have y pairs for £48.

Recall that the ratio is expressed only with quantities of the same unit.

Hence, we should pair quantities using the ratio and the order in which quantities are mentioned in the question,

5 pairs to y pairs

£120 to £48

Next, remember that proportion is the equation of ratios, thus we have

Next, we convert ratios to fractions and solve to get

Now, we cross multiply to get,

Thus, Thomas can only afford 2 pairs of shoes with £48.

It takes 12 laborers 3 days to clear a certain plot of land, how many days would it take 4 laborers to clear the same plot?

**Solution**

We first determine what type of proportion we have. In order to do so, we answer this question,

if the number of laborers decreases would it take less time to clear the same plot?

Your answer would tell you if it is a direct or inverse proportion.

The response is NO. Surely, fewer laborers would mean more time spent on clearing the plot, thus, this is an inverse proportion.

Next, we write out our values:

12 laborers in 3 days

Now, we assign a letter to the unknown value, so, let q represent the time it takes 4 laborers to do the job. Thus we have

4 laborers in q days

Next, we recall that the ratio is expressed only with quantities of the same unit. Thus, we should pair quantities using ratios and in the order they have been mentioned in the question.

However, because it is an inverse proportion we would have to swap positions in one of the quantities. This means that the relationship is in a different direction. Hence we have

12 laborers to 4 laborers

q days to 3 days

Now, remember that proportion is the equation of ratios. Therefore,

Next, we convert from ratio to fraction to get

We cross multiply;

Hence, it would take 4 laborers 9 days to clear that plot of land.

Note that if it were to be a direct proportion, it would have been 12 laborers to 4 laborers and 3 days to q days, both maintaining their order or position; but because it is inverse we have chosen to swap the position of the second ratio (days)

The use of ratio is very important as it translates into our daily activities. Particularly when it comes to sharing as well as determining the portion or fraction out of a whole quantity. Below are some examples to illustrate further.

A man shares his wealth among three of his sons James, John and Peter in the ratio 4:3:2. If he is worth £90,000, how much goes to John?

**Solution**

We first find the total of the ratio,

Next we find what fraction of the man's wealth goes to John. This is the same as finding the ration between Johns share value and the total share value;

We then multiply the fraction of the man's wealth that goes to join by the worth of the man,

John's share is £27000.

In a graduating class of 125 students, 50 are boys. What is the ratio of boys to girls?

**Solution**

Since the number of boys and the total number of students have been given, we should solve for the number of girls which is

Since the number of girls have been calculated, we can now find the ratio of boys to girls as,

We divide the numerator and denominator by the highest common factor which is 25. We divide through by 25 to get

- Ratio is the comparison of two or more quantities by showing the relationship in their various sizes. It tells us how much of a quantity can be found in another quantity.
- There are three notations for a ratio which are number notation, word notation, and fraction notation.
- The ratio formula is the expression or equation used in calculating ratios.
- Ratio scaling is the increase or decrease of ratios when they are multiplied or divided.
- Proportion is an equation that compares and gives the relationship between two ratios.

An example of ratio scale is if the ratio is 3:4 and has been scaled up by 5 it becomes 15:20.

The formula of ratio is just the quotient of the two quantities. Like a:b is a/b.

More about Ratio

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.