StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Reciprocal Graphs

- Calculus
- Absolute Maxima and Minima
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Disk Method
- Divergence Test
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Improper Integrals
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Differential Equation
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- One-Sided Limits
- Optimization Problems
- P Series
- Particular Solutions to Differential Equations
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Tangent Lines
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal´s Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Rounding
- SAS Theorem
- SSS Theorem
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Comparing Data
- Conditional Probability
- Correlation Math
- Cumulative Frequency
- Data Interpretation
- Discrete Random Variable
- Distributions
- Events (Probability)
- Frequency Polygons
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Testing
- Large Data Set
- Linear Interpolation
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Random Variables
- Sampling
- Scatter Graphs
- Single Variable Data
- Standard Deviation
- Standard Normal Distribution
- Statistical Measures
- Tree Diagram
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

**Reciprocal Graphs** are graphical representations of reciprocal functions generically represented as and , where the numerator is a real constant, and the denominator contains an algebraic expression with a variable x.

Reciprocal graphs are useful to visually represent relationships that are inversely proportional, which means that they behave in opposite ways – if one decreases, the other one increases, and vice versa. For example, if the number of workers in a shop increases, the amount of time that the customers spend waiting to be served will be reduced.

To sketch this type of graph, you need to take into account its asymptotes. An **asymptote** is a line that the curve gets very close to, but never touches. The graph of reciprocal functions and have asymptotes at and .

See the graph below for

is a vertical asymptote because you cannot divide by zero; therefore, x cannot be zero. is a horizontal asymptote because there are no values of x that make , so y cannot be zero either.

Notice that the graph of is symmetric to the lines and .

In general, the **domain of reciprocal functions** will be all real numbers apart from the vertical asymptote, and the **range** will be all real numbers apart from the horizontal asymptote.

The Graphs article discusses that the coordinate plane is divided into four quadrants named using roman numbers (I, II, III and IV):

The possible **types of reciprocal graphs** include:

**Reciprocal functions of the type**

a) If a> 0:

For example, if , , the shape of the graph is shown below. Notice that the graph is drawn on quadrants I and III of the coordinate plane.

b) If a <0:

For example, if , , the shape of the reciprocal function is shown below. In this case, the graph is drawn on quadrants II and IV. This graph is the reflection of the previous one because the negative sign in the function means that all positive values of will now have negative values of y, and all negative values of x will now have positive values of y.

For example, if , , the shape of the graph is shown below. Notice that the graph is drawn on quadrants I and II of the coordinate plane. The shape of the graph of changes in comparison to the previous graph of , because having in the denominator means that all values of y will be positive for all values of .

b) If a <0:

For example, if , , the shape of the reciprocal function is shown below. In this case, the graph is drawn on quadrants III and IV. This graph is also the reflection of the previous one due to the negative sign in the numerator of the function.

To show you how to draw the graph of a reciprocal function, we will use the example of . To graph this function you need to follow these steps:

**Identify the vertical and horizontal asymptotes.**

For , and are asymptotes.

**Identify the type of reciprocal function or , and if a is positive or negative. T**his information will give you an idea of where the graphs will be drawn on the coordinate plane. This step is optional.

In our example , the reciprocal function is of type y = and a> 0; therefore, the graphs will be drawn on quadrants I and III.

**Plot points strategically reveal the graph's behaviour as it approaches the asymptotes from each side.**

**Negative side:**

Notice that the further we go to the left, the closer we get to zero.

Now let's try some fractions of negative 1:

**Positive side:**

Notice that the further we go to the right, the closer we get to zero.

Now let's try some fractions of positive 1:

x | ||||||||||

y |

**Draw the graph using the table of values obtained:**

A reciprocal function has been transformed if its equation is written in the standard form , where a, h and k are real constants, the vertical asymptote of the function is , and the horizontal one is .

For the reciprocal function , the asymptotes are and .

You might be asked to find the interceptions of the reciprocal function graph with the x and y axes. You can proceed as follows:

**x-intercept:**Substitute y = 0 in the equation and solve for x.

The point where the graph of the function crosses the x-axis is (-3, 0)

**y-intercept:**Substitute x = 0 in the equation and solve for y.

The point where the graph of the function crosses the y-axis is

If you are given a reciprocal graph, you can find its equation by following these steps:

Find the vertical asymptote. This is the value you need to add or subtract from the variable in the denominator . It will have the opposite sign of the vertical asymptote.

Find the horizontal asymptote. This will be the value of , which is added or subtracted from the fraction depending on its sign.

Find the value of by substituting the x and y corresponding to a given point on the curve in the equation.

Find the equation for the reciprocal graph below:

- Vertical asymptote , therefore
- Horizontal asymptote , therefore
- Substitute the point A (-5, 0) in the reciprocal function to find the value of :

The equation of the reciprocal function is

We know from Algebra that you can calculate the reciprocal of a number by swapping the numerator and the denominator. The same applies to functions. To find the reciprocal of a function you can find the expression .

Find the reciprocal of the function

The reciprocal of is

- Reciprocal graphs are graphical representations of reciprocal functions, where the numerator is a real constant, and the denominator contains an algebraic expression with a variable x.
- To sketch reciprocal graphs, you must take into account their asymptotes.
- An asymptote is a line that the curve gets very close to, never touching it.
- The domain of reciprocal functions will be all real numbers apart from the vertical asymptote.
- The range of reciprocal functions will be all real numbers apart from the horizontal asymptote.

To graph this function you need to follow these steps:

- Identify the vertical and horizontal asymptotes.
- Identify the type of reciprocal function y = a/x or y = a/x², and if a is positive or negative. This information will give you an idea of where the graphs will be drawn on the coordinate plane. (Optional)
- Plot points strategically to reveal the behaviour of the graph as it approaches the asymptotes from each side.
- Draw the graph using the table of values obtained.

To find the equation of a reciprocal function y = a/(x+h) + k follow these steps:

- Find the vertical asymptote. This is the value that you need to add or subtract from the variable in the denominator (h). h will have the opposite sign of the vertical asymptote.
- Find the horizontal asymptote. This will be the value of k, which is added or subtracted from the fraction depending on its sign.
- Find the value of a by substituting the values of x and y corresponding to a given point on the curve in the equation.

To find the reciprocal of a function f(x) you can find the expression 1/f(x).

More about Reciprocal Graphs

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.