Select your language

Suggested languages for you:
Log In Start studying!
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

SAS Theorem

SAS Theorem

Generally, in the study of triangles, we need information on all its sides and angles to find the congruence between two triangles. But is it possible to get the congruence and similarity relation of two triangles without all the sides and angles? SAS theorem can be quite useful in this type of scenario. SAS theorem can also be helpful in calculating the area of triangles.

In this section, we will understand the SAS theorem and its important statements. We will also see how we can find the area of any given triangle using the SAS theorem.

SAS congruence theorem

SAS congruence theorem gives the congruent relation between two triangles. When all the corresponding angles are congruent to each other and all the corresponding sides are congruent in two triangles, those triangles are said to be congruent. But with the SAS congruence theorem, we only consider two sides and one angle to establish the congruence between the triangles.

Here as the name suggests, SAS stands for Side-Angle-Side. When using the SAS congruence theorem, we consider two corresponding adjacent sides and the angle included between those two sides.

One should always note that the angle should be the included one and not any other, as it would not then satisfy the SAS criterion.

SAS congruence theorem : Two triangles are said to be congruent if the two corresponding sides and the angle included to these sides of one triangle are equal to the corresponding sides and the included angle of the other triangle.

Mathematical we represent as, if then

SAS Theorem, SAS congruent triangles, StudySmarterSAS congruent triangles, Mouli Javia - StudySmarter Originals

If the SAS congruence theorem satisfies for any two triangles, then we can directly say that all the sides and angles of one triangle will be equal to the other triangle respectively.

SAS similarity theorem

We can conclude two triangles are similar using the SAS similarity theorem. Usually, we need information about all the sides and angles of both the triangles to prove them similar. But with the help of the SAS similarity theorem, we only consider two corresponding sides and one corresponding angle of these triangles.

As SAS triangles have two sides, we can take the proportion of these sides to show the similarity between the two triangles.

SAS similarity theorem : Two triangles are similar if the two adjacent sides of one triangle are proportional to the two adjacent sides of another triangle and the included angles of both triangles are equal.

Mathematically we say that, if and then

SAS Theorem, SAS similarity theorem, StudySmarterSAS similarity theorem, Mouli Javia - StudySmarter Originals

SAS theorem proof

Let us look at the SAS theorem proof for both congruence and similarity.

SAS congruence theorem proof

Let's perform an activity to prove the SAS congruence theorem. From the statement of the SAS congruence theorem, it is given that and

SAS Theorem, SAS congruence theorem, StudySmarterSAS congruence theorem, Mouli Javia - StudySmarter Originals

To prove:

We take a triangle and place it over the other triangle Now it can be seen that the B coincides with Y as As and when both triangles are placed over each other, AC and XZ will fall alongside each other. As point C coincides with Z. Also BC and YZ will coincide with each other.

So clearly, both triangles and coincide with each other. Hence .

ASA similarity theorem proof

It is given from the statement of similarity theorem that and

To prove:

SAS Theorem, SAS similarity theorem, StudySmarterSAS similarity triangle with constructed line PQ, Mouli Javia - StudySmarter Originals

Consider a point P on DE at such a distance such that Then join a line segment from P to EF at point Q such that As we get that

Then by Basic Proportionality Theorem,

Basic Proportionality Theorem : If a line is parallel to one side of a triangle and if that line intersects the other two sides at two different points in the triangle then those sides are in proportion.

We are already given that,

As and from equation (1) and equation (2),

And we also have that

So using the SAS congruence theorem from the above information we get that

We already have that So from the both obtained similarity we get that

SAS theorem formula

The SAS theorem is not only used to show congruence and similarity between two triangles, but we get the SAS theorem formula from it. This SAS formula can be very helpful in trigonometry to calculate the area of a triangle. This formula uses trigonometry rules to find the area of the triangle.

The SAS theorem formula for the triangle is expressed as :

Area of triangle where a and b are the two sides of SAS triangle and x is the measure of the included angle.

SAS Theorem, SAS triangles, StudySmarterSAS triangle, Mouli Javia - StudySmarter Originals

Let us derive the SAS theorem formula. In the SAS construct a perpendicular from point A onto the line BC at D. Now as forms a right triangle, we can use trigonometric ratios with as the angle.

Also, we know that the general formula to calculate any triangle is

Area

Now in the b is the base and p is the height. Then substituting this value in the formula of are we get,

Area

From equation (1) we know the value of p, so we substitute that in the above-obtained equation (2) of area.

Area

Hence the formula for the area of the triangle using the SAS theorem is

SAS theorem examples

Here are some of the SAS theorem examples to understand the concept better.

Determine if the given triangles are similar or not.

SAS Theorem, SAS similarity theorem, StudySmarterSimilar triangles example, www.ck12.org

Solution:

From the figure, we can see that two sides and one angle measure are provided for each triangle. And the gives are adjacent and the angle is the included angle of both the sides. so the given triangle can be considered as the SAS triangle.

Here we need to determine the similarity between and But for that, we need to verify the SAS similarity theorem.

As and are both right-angle triangles. So it implies that

We also need to check the proportion between the given sides.

So, from above we can see that both sides and an angle satisfy the condition of the SAS similarity theorem. Hence both the triangles and are similar triangles.

Find the area of the given triangle using SAS theorem formula, if and

SAS Theorem, SAS triangles, StudySmarterSAS triangle, Mouli Javia - StudySmarter Originals

Solution:

Here we are given that So consider

Then Area of the above triangle using the SAS theorem formula is,

Area

Hence, the area of the triangle using the SAS theorem formula is 30 cm2

SAS Theorem - Key takeaways

  • SAS congruence theorem : Two triangles are said to be congruent if the two corresponding sides and the angle included to these sides of one triangle are equal to the corresponding sides and the included angle of the other triangle.
  • SAS similarity theorem : Two triangles are similar if the two adjacent sides of one triangle are proportional to the two adjacent sides of another triangle and the included angles of both triangles are equal.
  • Area of a triangle using SAS theorem where a and b are the two sides of SAS triangle and x is the measure of the included angle.

Frequently Asked Questions about SAS Theorem

SAS Theorem gives the congruence and similarity relation of two triangles with corresponding sides and included angle of both the triangles.

SAS congruence rule can be proved by superimposing both the triangles on each other.

SAS similarity triangle can be solved using the basic proportionality theorem.

Suppose for triangles ABC and XYZ, if AB=XY =5, BC=YZ=10, and the included angle between both the triangle is 45°.

Final SAS Theorem Quiz

Question

What is SAS congruence theorem?

Show answer

Answer

Two triangles are said to be congruent if the two corresponding sides and the angle included to these sides of one triangle are equal to the corresponding sides and the included angle of the other triangle.

Show question

Question

The angle needed for the SAS theorem can be considered from any of the three angles of the triangle.

Show answer

Answer

True

Show question

Question

Which of the following relationship can be obtained with the help of SAS theorems?

Show answer

Answer

Congruent triangles

Show question

Question

State SAS similarity theorem.

Show answer

Answer

Two triangles are similar if the two adjacent sides of one triangle are proportional to the two adjacent sides of another triangle and the included angles of both triangles are equal.

Show question

Question

Is it possible to find an area of the triangle with just the SAS theorem?

Show answer

Answer

Yes

Show question

Question

What is the full form of SAS?

Show answer

Answer

Side-Angle-Side

Show question

60%

of the users don't pass the SAS Theorem quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.