StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
Americas
Europe
The small angle approximation is a trick that can be used to estimate the values of trigonometric functions for small angles measured in radians (small values of). The small angle approximation is used to make it easier to solve and operate with trigonometric functions.
There are three equations we can use for the small angle approximation: one for , one for
, and one for
.
The assumption that can be better understood when we look at the graphs of y = x and y = sin x.
A graph showing the lines y=x (red) and y=sin x (blue)
Now, as you can see around x = 0, the graphs of y = x and y = sinx are very close to each other.
This is why, for very small angles, we can say that
The approximation for cosine isn't quite as straightforward as for sin. The small angle approximation for cos is derived using the small angle approximation result that we got for sin, and a double angle formula. We use the double angle formula:
Now, if we say that So,
We know from our previous calculation that for a small value ofwe assume that:
Which, simplified, gives us the small angle approximation for cos:
For the small angle approximation of tan, we use the same logic as for sin. Looking at the graphs of y = tanx and y = x,
A graph showing the lines y=x (red) and y=tan x (blue)
Again, for values close to x = 0, we see that the two functions are very close to each other:
Hence, we assume that for small values of
The formulas derived earlier can be used in questions and problems to make it easier and quicker to solve them. We will look at a few examples of how to apply this.
When is small, show that
can be approximated by
To solve this question, we will need to use the small angle approximations for sin and cos: We can now substitute this into
, which gives us
. We can simplify this expression by multiplying top and bottom by 2:
which simplifies to
, as required by the question.
a) When x is small, show that tan (3x) cos (2x) can be approximated by
b) Hence approximate the value of tan (0.3) cos (0.2) to 3 sf
This question needs to be answered in two parts: a and b. Let's start by looking at how we would solve a). We will need to use the facts did tan x≈ x and Substituting this into tan (3x) cos (2x), we get:
. Multiplying the bracket by 3x:
as required.
For part b, we have to find the tan value for 0.3 and cos for 0.2. We know the expressions for tan 3x and cos 2x, so: 3x = 0.3 and 2x = 0.2 gives us x = 0.1. Now we can plug in 0.1 into the expression we found earlier:
If the angle is given in degrees, you will need to convert it to radians first to use the small angle approximation. You can use the formula
The small angle approximation can be used to make it easier to work with trigonometric functions when looking at angles close to 0 rad.
The small angle approximation has to be worked out in radians.
The three formulas for small angle approximation are:
No, small angle approximations have to be calculated in radians. If the angle is in degrees, you can convert the angle to radians first using radian=degree x (π/180)
The small angle approximation is a trick that we can use to make it easier to work with trigonometric functions when looking at small angles. The three small angle approximations are:
sin𝛉≈𝛉
cos𝛉≈1-(𝛉^2)/2
tan𝛉≈𝛉
To use the small angle approximation, simply replace sin𝛉 by 𝛉, cos 𝛉 by 1-(𝛉^2)/2 or tan𝛉 by 𝛉 in the question or problem that you are trying to solve and then carry on working it out as normal.
Be perfectly prepared on time with an individual plan.
Test your knowledge with gamified quizzes.
Create and find flashcards in record time.
Create beautiful notes faster than ever before.
Have all your study materials in one place.
Upload unlimited documents and save them online.
Identify your study strength and weaknesses.
Set individual study goals and earn points reaching them.
Stop procrastinating with our study reminders.
Earn points, unlock badges and level up while studying.
Create flashcards in notes completely automatically.
Create the most beautiful study materials using our templates.
Sign up to highlight and take notes. It’s 100% free.
Over 10 million students from across the world are already learning smarter.
Get Started for Free