Select your language

Suggested languages for you:
Log In Start studying!
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

SSS Theorem

SSS Theorem

Have you ever wondered if two or more triangles are given even if they don't look the same, then how are they compared? And if they are similar then do we really need all the sides and angles to determine it? Here we will understand the SSS theorem to determine congruent triangles easily.

SSS theorem definition

The triangles having the same shape and size are congruent triangles.

That is the triangles have corresponding angles and corresponding sides. We can test its congruence using some theorems without checking all the angles and sides of triangles. And one of the theorems is the SSS theorem.

SSS theorem : If all the three corresponding sides of two triangles are equal to each other, then they are congruent.

So as the name suggests, this theorem stands for Side-Side-Side. Here we only take a look at the sides of the triangle and not anything else.

SSS Theorem, SSS congruent triangles, StudySmarterSSS congruent triangles, Mouli Javia - StudySmarter Originals

SSS congruence theorem

The SSS congruence theorem gives the congruence relation between two triangles based on their sides.

SSS congruence theorem : The two triangles are congruent if all the three respective sides of both the triangles are equal.

Mathematically, if and , then

SSS Theorem, SSS congruent triangles, StudySmarterSSS congruence triangles, Mouli Javia - StudySmarter Originals

So if we can replace all the three sides of one triangle with all the sides of another triangle then both triangles are congruent using the SSS criterion. In this situation, both triangles are represented with a congruency symbol.

As it is given we know that all three sides of both the triangles and are of the same size and same length with each other. So we can lay sides XY on AB, YZ on BC, and XZ on AC by superimposing both the triangles. Hence that gives that So

SSS congruence triangle examples

Here we will see some examples of SSS congruence to understand it.

Show that the given triangles are congruent to each other.

SSS Theorem, SSS congruent triangles examples, StudySmarterExamples of congruent triangles using SSS congruence, Mouli Javia - StudySmarter Originals

Solution:

We can see from the figure As all the three sides both the triangles are equal to each other respectively, we can directly use the SSS congruence theorem.

Hence,

SSS similarity theorem

In triangles if the corresponding angles are congruent and corresponding sides are proportional then both the triangles are similar. But to check this we don’t necessarily have to consider all the sides and angles. We can simply use the SSS similarity theorem and the knowledge of Proportional sides to prove similar triangles.

SSS Similarity Theorem : Two triangles are said to be similar when the corresponding sides of these two triangles are proportional.

Proof: We are given that the corresponding sides of two triangles are proportional.

That is,

To prove:

SSS Theorem, SSS similarity triangles, StudySmarterTriangles with constructed parallel line, Mouli Javia - StudySmarter Originals

First, we consider two points P and Q on lines MN and MO respectively such that and . Now we join these points and form a line PQ such that PQ is parallel to NO.

We can construct line PQ by parallel postulate, which states that there is one parallel line passing through any point not on that line in the same plane.

Then we substitute AB and AC with MP and MQ respectively in equation 1.

Now, as and are corresponding angles respectively. Hence by applying AA - Similarity we have

From the definition of similar triangles on and we get that

Again substituting and in equation 1, we get

So comparing equation 2 and equation 3

Finally, we know that . So by the SSS congruence theorem, we get And we also have that Hence from both the similarity we get

SSS similarity theorem examples

Let us take a look at SSS similarity theorem examples.

Check if the given triangles are similar or not.

SSS Theorem, SSS similarity triangles examples, StudySmarterSSS similarity theorem example, Mouli Javia - StudySmarter Originals

Solution:

Here to determine similar triangles we need to check the proportional sides. So first we will find the ratios of the corresponding sides.

So all the corresponding sides of both the triangles are equal.

By using the SSS similarity theorem, both the triangles and are similar.

Find the value of x by using the SSS similarity theorem.

SSS Theorem, SSS similarity triangles examples, StudySmarterSSS similarity theorem example, static.bigideasmath.com

Solution:

First we find the proportion of the corresponding sides. For that, we take into account any one of the sides with unknown value. Let us consider sides AB and BC in and sides DE and EF in

So the proportion of the sides will be,

So the value of x is 7. But let us confirm it by substituting it in the unknown values sides and checking the proportions of it.

Now we check the proportions for the corresponding sides.

As the given triangles are similar triangles, their proportional corresponding side should be equal. And we clearly see that they are equal. Hence our value of is correct.

SSS Theorem - Key takeaways

  • SSS theorem : If all the three corresponding sides of two triangles are equal to each other, then they are congruent.
  • SSS congruence theorem : The two triangles are congruent if all the three respective sides of both the triangles are equal.
  • SSS Similarity Theorem : Two triangles are said to be similar when the corresponding sides of these two triangles are proportional.

Frequently Asked Questions about SSS Theorem

The two triangles are congruent if all the three respective sides of both the triangles are equal.

SSS theorem can be solved by taking equal corresponding sides.

SSS similarity theorem is proved by using AA - similarity and SSS congruence theorem.

An example of SSS similarity theorem is one triangle with sides 9,15,18 and another triangle with sides 6,10,12.

Final SSS Theorem Quiz

Question

What are congruent triangles?

Show answer

Answer

Congruent triangles are triangles with the same shape and size 

Show question

Question

State SSS congruence theorem.

Show answer

Answer

The two triangles are congruent if all the three respective sides of both the triangles are equal.

Show question

Question

To show congruent triangles using SSS congruence which of the following is needed?

Show answer

Answer

The congruent pairs of sides

Show question

Question

State SSS similarity theorem.

Show answer

Answer

Two triangles are said to be similar when the corresponding sides of these two triangles are proportional.

Show question

Question

If one congruent side length of two triangles is given. Then what information is needed for SSS theorem?

Show answer

Answer

Two congruent pairs of both the triangles.

Show question

Question

If three pairs of congruent sides for two triangles are given, then which of the following relation can be established?

Show answer

Answer

Congruence

Show question

60%

of the users don't pass the SSS Theorem quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.