Log In Start studying!

Select your language

Suggested languages for you:
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

Trigonometric Functions

Trigonometric Functions

Let's look at everything to do with trigonometric functions – sine, cosine and tangent functions and their respective graphs. Then let's explore the secant, cosecant, cotangent, arcsine, arccosine and arctangent functions.

What are trigonometric functions?

Trigonometric functions are functions that relate to angles and lengths in a triangle. The most common trigonometric functions are sine, cosine and tangent. However, there are reciprocal trigonometric functions, such as cosecant, secant, cotangent and inverse trigonometric functions such as arcsine, arccosine and arctangent, which we will also explore in this article.

SOH CAH TOA

An easy way to remember the sine, cosine and tangent functions and what sides they correspond to in a right angle triangle is by using SOH CAH TOA. If we have a right angle triangle as below, and we label one angle 𝞱, we must label the three sides of the triangle opposite (for the only side that is opposite the angle 𝞱 and is not in contact with that angle), hypotenuse ( for the longest side, which is always the one opposite the 90 ° angle) and adjacent (for the last side).

Trigonometry Functions, Labelling the sides of a right-angled triangle, StudySmarterLabelling the sides of a right-angled triangle

The sine, cosine and tangent functions relate the ratio of two sides in a right-angled triangle to one of its angles. To remember which functions involve which sides of the triangle, we use the acronym SOH CAH TOA. The S, C and T stand for Sine, Cosine and Tangent respectively and the O, A and H for Opposite, Adjacent and Hypotenuse. So the Sine function involves the Opposite and the Hypotenuse, and so on.

Trigonometric Functions, SOH CAH TOA triangles for remembering trigonometric functions, StudySmarterSOH CAH TOA triangles for remembering trigonometric functions

All of the functions sine, cosine and tangent are equal to the sides they involve divided by each other.

What is the sine function?

As seen above, you can work out the sine of an angle in a right-angled triangle by dividing the opposite by the hypotenuse. The graph for a sine function looks like this (the red curve):

Trigonometric Functions, A graphical illustration of the sine function, StudySmarter OriginalsA graphical illustration of the sine function

From this graph, we can observe the key features of the sine function:

  • The graph repeats every 2𝞹 or 360 °

  • The minimum value for sine is -1

  • The maximum value for sine is 1

  • This means that the amplitude of the graph is 1 and its period is 2𝞹 (or 360 °)

  • The graph crosses the y axis at 0, and every 𝞹 radians before and after that.

  • The sine function reaches its maximum value at 𝞹 / 2 and every 2𝞹 before and after that.

  • The sine function reaches its minimum value at 3𝞹 / 2 and every 2𝞹 before and after that.

Memorising the values of sine

You will need to remember the values of sine for commonly used angles by heart, and although this might sound tricky, there is a way to make it easier to memorise. You will need to know the sine values for the angles 0, 𝞹 / 6 (30 °), 𝞹 / 4 (45 °), 𝞹 / 3 (60 °) and 𝞹 / 2 (90 °). For this, the easiest way is to start constructing a table for the angle, 𝞱 and sin𝞱:

θ0
sinθ

Now we to fill out the sine values. For this, we will start by putting the numbers 0 to 4 from left to right:

θ0
sin θ01234

The next step is to add a square root to all these numbers and divide them by 2:

θ0
sin θ

Now, all we have left to do is simplify what we can:

θ0
sin θ01

And that's it!

What is the cosine function?

You can find the cosine value for an angle in a right-angled triangle by dividing the adjacent by the hypotenuse. The graph for the cosine value looks exactly like the sin graph, except that it is shifted to the left by 𝞹 / 2 radians (the blue curve):

Trigonometric Functions, graph of the sine and cosine graphs showing the wave form and period StudySmarterA graphical illustration of the cosine function

By observing this graph, we can determine the key features of the cosine function:

  • The graph repeats every 2𝞹 or 360 °

  • The minimum value for cosine is -1

  • The maximum value for cosine is 1

  • This means that the amplitude of the graph is 1 and its period is 2𝞹 (or 360 °)

  • The graph crosses the y axis at 𝞹 / 2, and every 𝞹 radians before and after that.

  • The cosine function reaches its maximum value at 0 and every 2𝞹 before and after that.

  • The cosine function reaches its minimum value at 𝞹 and every 2𝞹 before and after that.

Memorising the values of cosine

You will also need to remember the values of cosine for commonly used angles by heart, and although this might sound tricky, there is a way to make it easier to memorise. You will need to know the sine values for the angles 0, 𝞹 / 6 (30 °), 𝞹 / 4 (45 °), 𝞹 / 3 (60 °) and 𝞹 / 2 (90 °). For this, we will use the same method as for sin and start constructing a table for the angle, 𝞱 and cos𝞱:

θ0
cos θ

Now we will fill in the numbers 0 to 4, but this time, we will do this from right to left instead:

θ0
cos θ43210

The final two steps are the same as before, so we will take the square root of each number and divide it by 2, and we simplify:

θ0
cos θ10

As you can see, sine and cosine values for common angles are the same, simply the other way around.

What is the tangent function?

You can work out the tangent of an angle by dividing the opposite by the adjacent in a right-angled triangle. However, the tangent function looks a bit different from the cosine and sine functions. It is not a wave but rather a non-continuous function, with asymptotes:

Trigonometric Functions, A graphical illustration of the tangent function, StudySmarter OriginalsA graphical illustration of the tangent function

By observing this graph, we can determine the key features of the tangent function:

  • The graph repeats every 𝞹 or 180 °

  • The minimum value for tangent is -infinity

  • The maximum value for tangent is infinity

  • This means that the tangent function has no amplitude and its period is 𝞹 (or 180 °)

  • The graph crosses the y axis at 0 and every 𝞹 radians before and after that

  • The tangent graph has asymptotes, which are values that the function will get closer to infinity.

  • These asymptotes are at 𝞹 / 2 and every 𝞹 before and after that.

The tangent of an angle can also be found with this formula:

tan𝞱 = sin𝞱 / cos𝞱

Memorising the values of tangent

Similar to before, you will need to remember the tan values for the angles 0, 𝞹 / 6 (30 °), 𝞹 / 4 (45 °), 𝞹 / 3 (60 °) and 𝞹 / 2 (90 °). For this, we will use the formula above and the tables that we already constructed for sine and cosine and use the fact that tan = sin/cos to work out the tan𝞱 values:

θ0
sin θ01
cos θ10
tan θ01/

Note that the value for tan (𝞹 / 2) cannot be determined as it is equal to 1/0, which cannot be worked out. This will result in an asymptote at 𝞹 / 2.

Inverse trigonometric functions

The inverse trigonometric functions refer to the arcsin, arccos and arctan functions, which can also be written as , , and . These functions do the opposite of the sine, cosine and tangent functions, which means that they give back an angle when we plug a sin, cos or tan value into them.

Trigonometric Functions, An illustration on the relationship of between trigonometric functions and their respective inverse functions, StudySmarterAn illustration on the relationship of between trigonometric functions and their respective inverse functions

The graphs for these functions look very different to the sin, cos and tan graphs:

Trigonometric Functions An illustration of arcsin, arccos and arctan on the x and y axis, StudySmarterAn illustration of arcsin, arccos and arctan on the x and y axis

What are the reciprocal trigonometric functions?

The reciprocal trigonometric functions refer to the cosecant, secant and cotangent functions, abbreviated as csc, sec and cot, respectively. We need to look back at our right-angled triangle to understand what these functions represent.

Trigonometry Functions, Labelling the sides of a right angled triangle, StudySmarterLabelling the sides of a right-angled triangle

We earlier defined sin, cos and tan based on the ratios of the sides of this triangle. The cosecant, secant and cotangent are simply the reciprocal of the sin, cos and tan ratios respectively. This means that to find the equation for cosecant 𝞱, we would flip the equation of sin 𝞱 and so on.

Trigonometric Functions - Key takeaways

  • SOH CAH TOA can help us remember the sin, cos, and tan functions.

  • The sine and cosine functions are waves with a period of 2𝝿 and an amplitude of 1.

  • The sine and cos functions are the same except shifted by 𝝿 / 2.

  • The tan function has asymptotes every 𝝿 radians.

  • The inverse trigonometric functions refer to arcsin, arccos, and arctan, and these functions give us the angle with a specific sin, cos, or tan value.
  • The reciprocal trigonometric functions refer to cosecant, secant, and cotangent, and these functions have the reciprocated equation of the sin, cos, and tan functions in a right-angled triangle.

Frequently Asked Questions about Trigonometric Functions

Sin, cos, tan, arcsin, arccos, arctan, csc, sec and cot.

The range for sine and cosine is -1≤y≤1 and for tan y ∈ R.

The easiest way is to remember the overall shape of the graph, and then work out the function for a few different numbers and add them to your graph.

Final Trigonometric Functions Quiz

Question

What is the equation for tan?

Show answer

Answer

opposite/ adjacent

Show question

Question

What is the equation for secant?

Show answer

Answer

Hypotenuse divided by adjacent.

Show question

Question

What are the reciprocal functions?

Show answer

Answer

arcsine

Show question

Question

Which function would I use to find the angle that has a sine value of \(0.73\)?

Show answer

Answer

The arcsin function.

Show question

Question

What is the amplitude of a tangent graph?

Show answer

Answer

None of these.

Show question

Question

What is the sine value of \(x=\frac{\pi}{6}\)?

Show answer

Answer

\(\dfrac{1}{2}\).

Show question

Question

What is the cosine value of \(x=\dfrac{\pi}{3}\)?

Show answer

Answer

\(\dfrac{1}{2}\).

Show question

Question

What is the tangent value of \(\dfrac{\pi}{2}\)?

Show answer

Answer

Undetermined.

Show question

Question

What happens to the tangent graph at \(x=-\dfrac{\pi}{2}\)?

Show answer

Answer

There is a vertical asymptote.


Show question

Question

 What unit does the angle need to be measured in for the small angle approximation to work?

Show answer

Answer

In radians and degrees if converted

Show question

Question

What is the small angle approximation for sin 10°?

Show answer

Answer

0.1745

Show question

Question

What is the small angle approximation for cos 10°?

Show answer

Answer

0.9848

Show question

Question

Using small angle approximation, give the tan value for 5°

Show answer

Answer

0.0873

Show question

Question

A function machine takes in two small angle approximations and multiplies them together. Jack put in sin(9°) and cos(9°). Jill puts in sin(8°) and tan(11°). Who ends up with the largest answer?

Show answer

Answer

Jack

Show question

Question

Your manager wants to save time but be accurate. You are allowed a 2% error in your approximations otherwise you must find the precise value. For sin x, what integer angles in degrees would you not be allowed to approximate? Write your answer as an inequality.

Show answer

Answer

x>13°

Show question

Question

What is the unit circle?

Show answer

Answer

A unit circle is a circle with a radius of 1 and a centre at the origin used to find values of and understand trigonometric functions like sin, cos and tan for different angles

Show question

Question

The unit circle allows us to look at angles between which two values?

Show answer

Answer

0 and 360° or 0 and 2𝜋 radians

Show question

Question

What is sin on the unit circle?

Show answer

Answer

The y-coordinate of a point on the circle

Show question

Question

What is cos on the unit circle?

Show answer

Answer

The x-coordinate of a point on the circle

Show question

Question

What is tan on the unit circle?

Show answer

Answer

The length of the tangent line that goes from the point on the circumference to the x-axis

Show question

Question

What is the radius of the unit circle?

Show answer

Answer

1

Show question

Question

What is the centre of the unit circle?

Show answer

Answer

 The origin (0,0)

Show question

Question

How many quadrants are in a circle?

Show answer

Answer

Four

Show question

Question

What is the sin value of 90°?

Show answer

Answer

1

Show question

Question

What is the cosine value of 0°?

Show answer

Answer

1

Show question

Question

 What is the cos of 𝜋/3?

Show answer

Answer

1/2

Show question

Question

What is the sin of 7𝜋/6?

Show answer

Answer

-1/2

Show question

Question

What is the sin of 𝜋?

Show answer

Answer

0

Show question

Question

What is the anacronym for finding the values of trigonometric functions using a triangle?

Show answer

Answer

SOHCAHTOA.

Show question

Question

What does the SOH in SOHCAHTOA stand for?

Show answer

Answer

Sine equals opposite over hypotenuse.

Show question

Question

What does the CAH in SOHCAHTOA stand for?

Show answer

Answer

Cosine equals adjacent over hypotenuse.

Show question

Question

What does the TOA in SOHCAHTOA stand for?

Show answer

Answer

Tangent equals opposite over adjacent.

Show question

Question

How do you write the tangent in terms of sine and cosine?

Show answer

Answer

Tangent equals sine divided by cosine.

Show question

Question

Which is the correct formula for the secant function?

Show answer

Answer

Secant equals 1 divided by the cosine.

Show question

Question

Which is the correct formula for the cosecant function?

Show answer

Answer

Cosecant equals 1 divided by the sine.

Show question

More about Trigonometric Functions
60%

of the users don't pass the Trigonometric Functions quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Get FREE ACCESS to all of our study material, tailor-made!

Over 10 million students from across the world are already learning smarter.

Get Started for Free
Illustration