StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Trigonometric Ratios

- Calculus
- Absolute Maxima and Minima
- Absolute and Conditional Convergence
- Accumulation Function
- Accumulation Problems
- Algebraic Functions
- Alternating Series
- Antiderivatives
- Application of Derivatives
- Approximating Areas
- Arc Length of a Curve
- Arithmetic Series
- Average Value of a Function
- Calculus of Parametric Curves
- Candidate Test
- Combining Differentiation Rules
- Combining Functions
- Continuity
- Continuity Over an Interval
- Convergence Tests
- Cost and Revenue
- Density and Center of Mass
- Derivative Functions
- Derivative of Exponential Function
- Derivative of Inverse Function
- Derivative of Logarithmic Functions
- Derivative of Trigonometric Functions
- Derivatives
- Derivatives and Continuity
- Derivatives and the Shape of a Graph
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Polar Functions
- Derivatives of Sec, Csc and Cot
- Derivatives of Sin, Cos and Tan
- Determining Volumes by Slicing
- Direction Fields
- Disk Method
- Divergence Test
- Eliminating the Parameter
- Euler's Method
- Evaluating a Definite Integral
- Evaluation Theorem
- Exponential Functions
- Finding Limits
- Finding Limits of Specific Functions
- First Derivative Test
- Function Transformations
- General Solution of Differential Equation
- Geometric Series
- Growth Rate of Functions
- Higher-Order Derivatives
- Hydrostatic Pressure
- Hyperbolic Functions
- Implicit Differentiation Tangent Line
- Implicit Relations
- Improper Integrals
- Indefinite Integral
- Indeterminate Forms
- Initial Value Problem Differential Equations
- Integral Test
- Integrals of Exponential Functions
- Integrals of Motion
- Integrating Even and Odd Functions
- Integration Formula
- Integration Tables
- Integration Using Long Division
- Integration of Logarithmic Functions
- Integration using Inverse Trigonometric Functions
- Intermediate Value Theorem
- Inverse Trigonometric Functions
- Jump Discontinuity
- Lagrange Error Bound
- Limit Laws
- Limit of Vector Valued Function
- Limit of a Sequence
- Limits
- Limits at Infinity
- Limits of a Function
- Linear Approximations and Differentials
- Linear Differential Equation
- Linear Functions
- Logarithmic Differentiation
- Logarithmic Functions
- Logistic Differential Equation
- Maclaurin Series
- Manipulating Functions
- Maxima and Minima
- Maxima and Minima Problems
- Mean Value Theorem for Integrals
- Models for Population Growth
- Motion Along a Line
- Motion in Space
- Natural Logarithmic Function
- Net Change Theorem
- Newton's Method
- Nonhomogeneous Differential Equation
- One-Sided Limits
- Optimization Problems
- P Series
- Particle Model Motion
- Particular Solutions to Differential Equations
- Polar Coordinates
- Polar Coordinates Functions
- Polar Curves
- Population Change
- Power Series
- Ratio Test
- Removable Discontinuity
- Riemann Sum
- Rolle's Theorem
- Root Test
- Second Derivative Test
- Separable Equations
- Simpson's Rule
- Solid of Revolution
- Solutions to Differential Equations
- Surface Area of Revolution
- Symmetry of Functions
- Tangent Lines
- Taylor Polynomials
- Taylor Series
- Techniques of Integration
- The Fundamental Theorem of Calculus
- The Mean Value Theorem
- The Power Rule
- The Squeeze Theorem
- The Trapezoidal Rule
- Theorems of Continuity
- Trigonometric Substitution
- Vector Valued Function
- Vectors in Calculus
- Vectors in Space
- Washer Method
- Decision Maths
- Geometry
- 2 Dimensional Figures
- 3 Dimensional Vectors
- 3-Dimensional Figures
- Altitude
- Angles in Circles
- Arc Measures
- Area and Volume
- Area of Circles
- Area of Circular Sector
- Area of Parallelograms
- Area of Plane Figures
- Area of Rectangles
- Area of Regular Polygons
- Area of Rhombus
- Area of Trapezoid
- Area of a Kite
- Composition
- Congruence Transformations
- Congruent Triangles
- Convexity in Polygons
- Coordinate Systems
- Dilations
- Distance and Midpoints
- Equation of Circles
- Equilateral Triangles
- Figures
- Fundamentals of Geometry
- Geometric Inequalities
- Geometric Mean
- Geometric Probability
- Glide Reflections
- HL ASA and AAS
- Identity Map
- Inscribed Angles
- Isometry
- Isosceles Triangles
- Law of Cosines
- Law of Sines
- Linear Measure and Precision
- Median
- Parallel Lines Theorem
- Parallelograms
- Perpendicular Bisector
- Plane Geometry
- Polygons
- Projections
- Properties of Chords
- Proportionality Theorems
- Pythagoras Theorem
- Rectangle
- Reflection in Geometry
- Regular Polygon
- Rhombuses
- Right Triangles
- Rotations
- SSS and SAS
- Segment Length
- Similarity
- Similarity Transformations
- Special quadrilaterals
- Squares
- Surface Area of Cone
- Surface Area of Cylinder
- Surface Area of Prism
- Surface Area of Sphere
- Surface Area of a Solid
- Surface of Pyramids
- Symmetry
- Translations
- Trapezoids
- Triangle Inequalities
- Triangles
- Using Similar Polygons
- Vector Addition
- Vector Product
- Volume of Cone
- Volume of Cylinder
- Volume of Pyramid
- Volume of Solid
- Volume of Sphere
- Volume of prisms
- Mechanics Maths
- Acceleration and Time
- Acceleration and Velocity
- Angular Speed
- Assumptions
- Calculus Kinematics
- Coefficient of Friction
- Connected Particles
- Constant Acceleration
- Constant Acceleration Equations
- Converting Units
- Force as a Vector
- Kinematics
- Newton's First Law
- Newton's Law of Gravitation
- Newton's Second Law
- Newton's Third Law
- Projectiles
- Pulleys
- Resolving Forces
- Statics and Dynamics
- Tension in Strings
- Variable Acceleration
- Probability and Statistics
- Bar Graphs
- Basic Probability
- Charts and Diagrams
- Conditional Probabilities
- Continuous and Discrete Data
- Frequency, Frequency Tables and Levels of Measurement
- Independent Events Probability
- Line Graphs
- Mean Median and Mode
- Mutually Exclusive Probabilities
- Probability Rules
- Probability of Combined Events
- Quartiles and Interquartile Range
- Systematic Listing
- Pure Maths
- ASA Theorem
- Absolute Value Equations and Inequalities
- Addition and Subtraction of Rational Expressions
- Addition, Subtraction, Multiplication and Division
- Algebra
- Algebraic Fractions
- Algebraic Notation
- Algebraic Representation
- Analyzing Graphs of Polynomials
- Angle Measure
- Angles
- Angles in Polygons
- Approximation and Estimation
- Area and Circumference of a Circle
- Area and Perimeter of Quadrilaterals
- Area of Triangles
- Arithmetic Sequences
- Average Rate of Change
- Bijective Functions
- Binomial Expansion
- Binomial Theorem
- Chain Rule
- Circle Theorems
- Circles
- Circles Maths
- Combination of Functions
- Combinatorics
- Common Factors
- Common Multiples
- Completing the Square
- Completing the Squares
- Complex Numbers
- Composite Functions
- Composition of Functions
- Compound Interest
- Compound Units
- Conic Sections
- Construction and Loci
- Converting Metrics
- Convexity and Concavity
- Coordinate Geometry
- Coordinates in Four Quadrants
- Cubic Function Graph
- Cubic Polynomial Graphs
- Data transformations
- Deductive Reasoning
- Definite Integrals
- Deriving Equations
- Determinant of Inverse Matrix
- Determinants
- Differential Equations
- Differentiation
- Differentiation Rules
- Differentiation from First Principles
- Differentiation of Hyperbolic Functions
- Direct and Inverse proportions
- Disjoint and Overlapping Events
- Disproof by Counterexample
- Distance from a Point to a Line
- Divisibility Tests
- Double Angle and Half Angle Formulas
- Drawing Conclusions from Examples
- Ellipse
- Equation of Line in 3D
- Equation of a Perpendicular Bisector
- Equation of a circle
- Equations
- Equations and Identities
- Equations and Inequalities
- Estimation in Real Life
- Euclidean Algorithm
- Evaluating and Graphing Polynomials
- Even Functions
- Exponential Form of Complex Numbers
- Exponential Rules
- Exponentials and Logarithms
- Expression Math
- Expressions and Formulas
- Faces Edges and Vertices
- Factorials
- Factoring Polynomials
- Factoring Quadratic Equations
- Factorising expressions
- Factors
- Finding Maxima and Minima Using Derivatives
- Finding Rational Zeros
- Finding the Area
- Forms of Quadratic Functions
- Fractional Powers
- Fractional Ratio
- Fractions
- Fractions and Decimals
- Fractions and Factors
- Fractions in Expressions and Equations
- Fractions, Decimals and Percentages
- Function Basics
- Functional Analysis
- Functions
- Fundamental Counting Principle
- Fundamental Theorem of Algebra
- Generating Terms of a Sequence
- Geometric Sequence
- Gradient and Intercept
- Graphical Representation
- Graphing Rational Functions
- Graphing Trigonometric Functions
- Graphs
- Graphs and Differentiation
- Graphs of Common Functions
- Graphs of Exponents and Logarithms
- Graphs of Trigonometric Functions
- Greatest Common Divisor
- Growth and Decay
- Growth of Functions
- Highest Common Factor
- Hyperbolas
- Imaginary Unit and Polar Bijection
- Implicit differentiation
- Inductive Reasoning
- Inequalities Maths
- Infinite geometric series
- Injective functions
- Instantaneous Rate of Change
- Integers
- Integrating Polynomials
- Integrating Trig Functions
- Integrating e^x and 1/x
- Integration
- Integration Using Partial Fractions
- Integration by Parts
- Integration by Substitution
- Integration of Hyperbolic Functions
- Interest
- Inverse Hyperbolic Functions
- Inverse Matrices
- Inverse and Joint Variation
- Inverse functions
- Iterative Methods
- Law of Cosines in Algebra
- Law of Sines in Algebra
- Laws of Logs
- Limits of Accuracy
- Linear Expressions
- Linear Systems
- Linear Transformations of Matrices
- Location of Roots
- Logarithm Base
- Logic
- Lower and Upper Bounds
- Lowest Common Denominator
- Lowest Common Multiple
- Math formula
- Matrices
- Matrix Addition and Subtraction
- Matrix Determinant
- Matrix Multiplication
- Metric and Imperial Units
- Misleading Graphs
- Mixed Expressions
- Modulus Functions
- Modulus and Phase
- Multiples of Pi
- Multiplication and Division of Fractions
- Multiplicative Relationship
- Multiplying and Dividing Rational Expressions
- Natural Logarithm
- Natural Numbers
- Notation
- Number
- Number Line
- Number Systems
- Numerical Methods
- Odd functions
- Open Sentences and Identities
- Operation with Complex Numbers
- Operations with Decimals
- Operations with Matrices
- Operations with Polynomials
- Order of Operations
- Parabola
- Parallel Lines
- Parametric Differentiation
- Parametric Equations
- Parametric Integration
- Partial Fractions
- Pascal's Triangle
- Percentage
- Percentage Increase and Decrease
- Percentage as fraction or decimals
- Perimeter of a Triangle
- Permutations and Combinations
- Perpendicular Lines
- Points Lines and Planes
- Polynomial Graphs
- Polynomials
- Powers Roots And Radicals
- Powers and Exponents
- Powers and Roots
- Prime Factorization
- Prime Numbers
- Problem-solving Models and Strategies
- Product Rule
- Proof
- Proof and Mathematical Induction
- Proof by Contradiction
- Proof by Deduction
- Proof by Exhaustion
- Proof by Induction
- Properties of Exponents
- Proportion
- Proving an Identity
- Pythagorean Identities
- Quadratic Equations
- Quadratic Function Graphs
- Quadratic Graphs
- Quadratic functions
- Quadrilaterals
- Quotient Rule
- Radians
- Radical Functions
- Rates of Change
- Ratio
- Ratio Fractions
- Rational Exponents
- Rational Expressions
- Rational Functions
- Rational Numbers and Fractions
- Ratios as Fractions
- Real Numbers
- Reciprocal Graphs
- Recurrence Relation
- Recursion and Special Sequences
- Remainder and Factor Theorems
- Representation of Complex Numbers
- Rewriting Formulas and Equations
- Roots of Complex Numbers
- Roots of Polynomials
- Rounding
- SAS Theorem
- SSS Theorem
- Scalar Triple Product
- Scale Drawings and Maps
- Scale Factors
- Scientific Notation
- Second Order Recurrence Relation
- Sector of a Circle
- Segment of a Circle
- Sequences
- Sequences and Series
- Series Maths
- Sets Math
- Similar Triangles
- Similar and Congruent Shapes
- Simple Interest
- Simplifying Fractions
- Simplifying Radicals
- Simultaneous Equations
- Sine and Cosine Rules
- Small Angle Approximation
- Solving Linear Equations
- Solving Linear Systems
- Solving Quadratic Equations
- Solving Radical Inequalities
- Solving Rational Equations
- Solving Simultaneous Equations Using Matrices
- Solving Systems of Inequalities
- Solving Trigonometric Equations
- Solving and Graphing Quadratic Equations
- Solving and Graphing Quadratic Inequalities
- Special Products
- Standard Form
- Standard Integrals
- Standard Unit
- Straight Line Graphs
- Substraction and addition of fractions
- Sum and Difference of Angles Formulas
- Sum of Natural Numbers
- Surds
- Surjective functions
- Tables and Graphs
- Tangent of a Circle
- The Quadratic Formula and the Discriminant
- Transformations
- Transformations of Graphs
- Translations of Trigonometric Functions
- Triangle Rules
- Triangle trigonometry
- Trigonometric Functions
- Trigonometric Functions of General Angles
- Trigonometric Identities
- Trigonometric Ratios
- Trigonometry
- Turning Points
- Types of Functions
- Types of Numbers
- Types of Triangles
- Unit Circle
- Units
- Variables in Algebra
- Vectors
- Verifying Trigonometric Identities
- Writing Equations
- Writing Linear Equations
- Statistics
- Bias in Experiments
- Binomial Distribution
- Binomial Hypothesis Test
- Bivariate Data
- Box Plots
- Categorical Data
- Categorical Variables
- Central Limit Theorem
- Chi Square Test for Goodness of Fit
- Chi Square Test for Homogeneity
- Chi Square Test for Independence
- Chi-Square Distribution
- Combining Random Variables
- Comparing Data
- Comparing Two Means Hypothesis Testing
- Conditional Probability
- Conducting a Study
- Conducting a Survey
- Conducting an Experiment
- Confidence Interval for Population Mean
- Confidence Interval for Population Proportion
- Confidence Interval for Slope of Regression Line
- Confidence Interval for the Difference of Two Means
- Confidence Intervals
- Correlation Math
- Cumulative Frequency
- Data Analysis
- Data Interpretation
- Discrete Random Variable
- Distributions
- Dot Plot
- Empirical Rule
- Errors in Hypothesis Testing
- Events (Probability)
- Frequency Polygons
- Generalization and Conclusions
- Geometric Distribution
- Histograms
- Hypothesis Test for Correlation
- Hypothesis Test of Two Population Proportions
- Hypothesis Testing
- Inference for Distributions of Categorical Data
- Inferences in Statistics
- Large Data Set
- Least Squares Linear Regression
- Linear Interpolation
- Linear Regression
- Measures of Central Tendency
- Methods of Data Collection
- Normal Distribution
- Normal Distribution Hypothesis Test
- Normal Distribution Percentile
- Point Estimation
- Probability
- Probability Calculations
- Probability Distribution
- Probability Generating Function
- Quantitative Variables
- Quartiles
- Random Variables
- Randomized Block Design
- Residuals
- Sample Mean
- Sample Proportion
- Sampling
- Sampling Distribution
- Scatter Graphs
- Single Variable Data
- Standard Deviation
- Standard Normal Distribution
- Statistical Graphs
- Statistical Measures
- Stem and Leaf Graph
- Survey Bias
- Transforming Random Variables
- Tree Diagram
- Two Categorical Variables
- Two Quantitative Variables
- Type I Error
- Type II Error
- Types of Data in Statistics
- Venn Diagrams

Have you ever looked down at your calculator and wondered what certain buttons actually do? For example, you may have seen the buttons ‘**sin**’, ‘**cos**’ and ‘**tan**’ but have never known what they actually mean. These three buttons are essential to our study of **trigonometry** and in this article, we will learn all about what they mean, and how we use them to answer questions. However, before we begin, we must first recap **Pythagoras**' **Theorem** to provide a bit more of a background.

By now, you have probably already studied Pythagoras’ theorem. In this section, we will quickly recap what we mean by Pythagoras' theorem and establish the key differences between Pythagoras and Trigonometry.

For any given right-angled triangle, the **longest** side of the triangle is called the **hypotenuse**. The **hypotenuse** is the side that appears slanted and is always the side **opposite** the **right angle**.

Pythagoras’ theorem states that for any given right-angled triangle, with hypotenuse, c, and the other two sides labelled a and b (as depicted in Figure 1), .

**Note: a and b in figure 1 are interchangeable, however, c must always be the hypotenuse. **

Suppose we have the below triangle, find the side labelled x.

**Solution: **

First, let's label each of the sides a, b and c:

Pythagoras- Example Finding Hypotenuse, Jordan Madge- StudySmarter Originals

Now, Pythagoras' theorem states that .

Substituting into this, we obtain , or.

Therefore, to find x we simply take the square root both sides. Thus, .

In the above example, we have what is known as a **Pythagorean Triple**. This is where each of the three sides of a right-angled triangle is an **integer**.

Suppose we have the below triangle, find the side labelled x.

Pythagoras- Example Finding Missing Side, Jordan Madge- StudySmarter Originals

**Solution: **

First, let's label each of the sides a, b and c:

Pythagoras- Example Finding Missing Side, Jordan Madge- StudySmarter Originals

Now, this example is slightly different from the previous as this time we are not finding the hypotenuse, c. Therefore, we have to use a rearranged version of Pythagoras' theorem: . Substituting and into this formula, we obtain . Thus, we simply need to square root both sides to obtain that (2.d.p).

Now, the key thing to note with Pythagoras's theorem is that it only works for **right-angled triangles** where we are **given** **two sides** and wish to find the third side. It doesn't involve any angles. However, what if we wanted to find a missing angle? What if we were given an angle but not enough sides? This is where **trigonometry** comes in!

The **purpose** of trigonometry is to find missing **lengths** and **angles**. For the time being, we will simply consider trigonometry in **right-angled** triangles. However, later on in another article, we will consider trigonometry in triangles that are not necessarily right-angled using what is known as the **sine** and** cosine rule**.

Now, let's dive straight into trigonometry. Like with Pythagoras, we will start by defining our triangle and labelling some key properties. Above depicted in figure 2 is a right-angled triangle with an angle labelled with the Greek symbol **theta** **()**. For some reason, mathematicians just like using this symbol to denote missing angles. Now, as before with Pythagoras, the hypotenuse is the **longest** **side** **opposite** the **right angle**. We now introduce two new labels for the other sides: the **adjacent** side and the **opposite** side.

The **opposite** **side** of a right-angle triangle is the side opposite the angle and we usually label it O. The **adjacent** **side**, is the side adjacent (next to) to the angle that is not the hypotenuse. We usually label this A.

Now that we have set up our triangle, we can define our **trigonometric ratios**. This is where **sin**, **cos** and **tan** come in handy!

Given the right-angled triangle in figure 3 with **hypotenuse** **H**, **opposite** **side** **O** and **adjacent** **side** **A**, we have the following ratios:

It may be worth noting at this point that **sin** is short for **sine**, **cos** is short for **cosine** and **tan** is short for **tangent**.

These ratios can be remembered using the acronym SOHCAHTOA. Although, learning to spell that acronym may be a challenge in itself. Now, at this point, it is okay if you are feeling a little bit lost or confused. It will all become clear in a few short moments. For now, we just need to accept that these ratios exist and that they are very useful.

So far we have covered all of the **tools** that you will need to answer questions involving trigonometric ratios. However, to really understand what it all actually means, we must go over some examples. Note, that the purpose of this entire exercise is to find **missing** **lengths** or **angles**. In this section, we will focus on finding missing lengths.

To find the missing side of a right-angled triangle using trigonometry, there are a few steps.

**Step 1:** Label the sides O, A and H.

**Step 2:** Work out which sides are * involved*. In other words, which sides do we either

**Step 3: **Identify the relevant **trigonometric** **ratio**.

**Step 4: **Set up the appropriate **equation**.

**Step 5:** **Solve** the **equation** to find the **missing** **side**.

**Suppose we have the below triangle. Find the side labelled x. **

**Solution: **

First, let's label each of the sides O, A and H.

Trigonometry- Example Finding Missing Side, Jordan Madge- StudySmarter Originals

The next step is to work out which two of the three sides are involved. What we mean by this, is which sides do we know or wish to know. In this example, we know the hypotenuse is and we want to know the adjacent side, . Thus, the two sides involved are the **adjacent** and **hypotenuse**. Next, we must identify which trigonometric ratio involves the adjacent and hypotenuse. In this case, it is cos, because cos is the only identity that involved both the adjacent and hypotenuse side. Substituting into we obtain .

All we have to do now is a bit of rearranging to find x. We can do this by multiplying both sides by 3. Thus,. We get the final answer by typing this into our calculator. So,

**Suppose we have the below triangle. Find the side labelled x. **

**Solution: **

First, let's label each of the sides O, A and H.

Trigonometry- Example Finding Missing Side, Jordan Madge- StudySmarter Originals

In this case, we know the hypotenuse, and we wish to know the opposite side. Therefore we use sin since sine is the only trigonometric ratio involving the hypotenuse and opposite side.

Now, so . Multiplying both sides by 3.7, we get which is 1.68 cm (3.s.f).**Suppose we have the below triangle. Find the side labelled x. **

**Solution:**

First, let's label each of the sides O, A and H.

Trigonometry- Example Finding Missing Side, Jordan Madge- StudySmarter Originals

In this case, we know the adjacent side, and we wish to know the hypotenuse. Therefore we use cos.

Since we have .

Now, to rearrange this, we need to first multiply both sides by x to obtain . Then, to find x, we divide both sides by to get (3.s.f).

**Suppose we have the below triangle. Find the side labelled x. **

**Solution:**

First, let's label each of the sides O, A and H.

Trigonometry- Example Finding Missing Side, Jordan Madge- StudySmarter Originals

In this case, we know the opposite side, and we wish to know the adjacent side. Therefore we use tan.

Since we have that . Multiplying both sides by x, we have . Dividing both sides by we get (3.s.f).

To find missing angles using trigonometry, the steps are very similar to before. However we need to use inverse trigonometric functions. On your calculator, you may see above each of sin, cos and tan. You can find them by pressing the **shift** button and then the relevant trig function.

Using your calculator, find and .

**Solution: **

(3.s.f)

(3.s.f)

(3.s.f)

**Suppose we have the below triangle. Find the angle labelled .**

**Solution: **

To find missing angles, the steps are pretty much the same as before. However, there is one minor difference. As before, let's start by labelling each of the sides O, A and H.

Trigonometry- Example Finding Missing Angle, Jordan Madge- StudySmarter Originals

Now, we again need to identify which sides are **involved**. In this case, we know the adjacent and hypotenuse. Since cos involves adjacent and hypotenuse, we use the **cosine**.

Since, we have .

Now this time, to get theta by itself, we must take the **inverse** **cosine** of both sides.

Therefore, our answer is (3.s.f).

**Suppose we have the below triangle. Find the angle labelled .**

**Solution: **

Labelling the sides, we can see that we have the **opposite** side and **hypotenuse**. Therefore we use **sine**.

Trigonometry- Example Finding Missing Angle, Jordan Madge- StudySmarter Originals

Since, we have

To get by itself, we must take the inverse sine of both sides. Thus, (3.s.f).

For obvious reasons, trigonometry is a topic usually covered in calculator exams. However, there are some values of sin, cos and tan that you may be expected to know for your GCSE non-calculator exam. It's mean, I know. However, you should try your best to **memorise** these results.

Angle() | Sin() | Cos( ) | Tan( ) |

30 | |||

45 | 1 | ||

60 |

**Suppose we have the below triangle. Find the side labelled x.**

*(non-calculator question)*

**Solution: **

Since we want to know the opposite side and we have the opposite side, we will use sine.

Since , we have .

Rearranging, we find that .

Using table 1, we see that

Thus,

**Suppose we have the below triangle. Find the angle labelled .**

*(non-calculator question)*

Trigonometry- Example Finding Missing Angle, Jordan Madge- StudySmarter Originals

**Solution: **

Since we have been given both the opposite and adjacent sides, we use tan.

Since , we have that .

To get by itself, we must take the inverse tan of both sides.

Thus,

Using table 1, we see that and thus .

**Trigonometric****ratios**are used when finding**missing****sides**and**angles**in**right angled triangles.****Trigonometry**differs to**Pythagoras**as it involves**angles.**- We can use the acronym
**SOHCAHTOA**to remember the trigonometric ratios. - For a given right angled triangle, we can label the
**hypotenuse**and**opposite**and**adjacent**sides. - The G
**reek****letter** - We can use
**inverse****trig****functions**to find angles.

tan(x)= opposite/ adjacent

More about Trigonometric Ratios

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.