StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
Americas
Europe
The electromotive force, known as emf, is the terminal potential difference of a source when there is no current flow. Internal resistance is the resistance to current flow inside the source itself. But, importantly, how do we calculate these values? Let’s find out. All voltage sources create a potential difference, providing current when connected to a circuit with resistance. This potential difference…
Explore our app and discover over 50 million learning materials for free.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenThe electromotive force, known as emf, is the terminal potential difference of a source when there is no current flow. Internal resistance is the resistance to current flow inside the source itself. But, importantly, how do we calculate these values? Let’s find out.
All voltage sources create a potential difference, providing current when connected to a circuit with resistance. This potential difference produces an electric field that acts on charges as a force, causing current to flow.
Despite its name, emf is not exactly a force. In fact, it is a unique kind of potential difference and is measured in volts (V).
We can also define emf as the work W done per unit charge Q, which gives us the following equation:
\[\varepsilon = \frac{dW}{dq}\]
Think of a battery.
We can also calculate emf (ε) with the equation below:
\[\varepsilon = \frac{E}{Q}\]
E stands for electrical energy in joules (J), and Q is the charge in coulombs (C).
In this equation, the potential difference is called the terminal potential difference. It will be equal to the emf if there is no internal resistance. However, this is not the case with real power supplies because there is always an internal resistance. Lost volts refer to the energy spent per coulomb while overcoming the internal resistance.
We know that the conservation of energy is apparent in electric circuits, and it is valid for the cases where there is internal resistance as well.
Lost volts is the name given to the energy spent per coulomb while overcoming the internal resistance. Also, be sure to check out our explanation on Energy Conservation.
As we've seen batteries or cells are sources of EMF, however they also have their own resistance. This resistance is known as internal resistance. We can think of real batteries or cells as being composed of an ideal EMF source connected to a resistor in series. This resistor accounts for the source's internal resistance. We already know that the load resistance (also known as external resistance) is the total resistance of the components in an external electric circuit. On the other hand, internal resistance is the resistance within the power source that resists current flow. It usually causes the power source to generate heat.
From Ohm’s law, we know that
\[V = I \cdot R\]
where V is the voltage in volts, I is the current in amperes, and R is the external resistance in ohms.
If we include the internal resistance, the total resistance will be R+r where internal resistance is shown by r, and the voltage can be expressed as emf (ε).
\[\varepsilon = I \cdot (R + r)\]
If you expand the brackets, you will get
\[\varepsilon = I \cdot R + I \cdot r\]
where I⋅R is the terminal potential difference in volts, and I⋅r is the lost volts (also measured in volts).
Now we can rearrange the equation as
\[\varepsilon = V_R + V_r\]
where VR is the terminal potential difference and Vr is the lost volts.
Here is the relationship between terminal potential difference and lost volts. You can see from the equation that if there is no internal resistance (so no lost volts), the terminal resistance will be equal to the emf.
\[V_R = \varepsilon - V_r\]
Internal resistance (r) has complex behaviour. Let’s look at our battery example again. As the battery depletes, its internal resistance rises. But what else affects the internal resistance? Here are some factors:
Calculating the internal resistance of a source is an important factor in achieving optimum efficiency and getting the source to provide maximum power to the electric circuit. Here are some examples of calculating different quantities with internal resistance.
Remember that R is for load resistance and r is for internal resistance.
A battery has an emf of 0.28V and an internal resistance of 0.65Ω. Calculate the terminal potential difference when the current flowing through the battery is 7.8mA.
Solution
Emf (ε), internal resistance (r), and the current (I) flowing through the battery are given in the question. Let’s put these into the terminal potential difference (VR) equation.
\[V_R = \varepsilon - V_r = 0.28V - (0.65 \Omega \cdot 7.8 \cdot 10^{-3} A)\]
\[V_R = 0.275 V\]
A cell has 0.45A flowing through it with an internal resistance of 0.25Ω. Find the energy wasted per second on the internal resistance in joules.
Solution
We know that
\[P = I^2 \cdot R\]
where P is the power in watts, I is the current in amperes, and R is the resistance in ohms.
Since the question asks for the energy wasted per second, we use the power equation because power is energy per second. We can also put the internal resistance r for resistance in the equation.
\[P = I^2 \cdot r\]
\[P = 0.45^2 A \cdot 0.25 \Omega = 0.05 W\]
A battery has an emf of 0.35V. The current flowing through the battery is 0.03A, and the load resistance is 1.2Ω. Find the internal resistance of the battery.
Solution
The emf value (ε) of the battery, the current (I) flowing through the battery, and the load resistance (R) are all given in the question. This is the right equation to use to find the internal resistance (r):
\[\varepsilon = I \cdot R + I \cdot r\]
Let’s put the given variables into the equation:
\[0.35V = 0.03 A \cdot 1.2 \Omega + 0.03 A \cdot r\]
If we solve the equation for r, we will get \(r = 10.47 \Omega\)
By using the following equation, you can determine the emf and internal resistance of an electrical cell. The equation that describes the relation between emf, terminal voltage, and internal resistance is ε = VR + Vr, where ε is emf in volts, VR is the terminal voltage in volts, I is current in amperes, and r is the internal resistance in ohms.
Calculating the internal resistance of a source is an important factor in achieving optimum efficiency and getting the source to provide maximum power to the electric circuit. By using the following equation, you can calculate efficiency with emf and internal resistance. The equation that describes the relation between emf, terminal voltage, and internal resistance is ε = VR + Vr, where ε is emf in volts, VR is the terminal voltage in volts, I is current in amperes, and r is the internal resistance in ohms.
If you draw a graph that has the terminal potential difference on the y-axis and the circuit's current on the x-axis, you will obtain a straight line that has a negative gradient. The emf is then the intercept on the y-axis and the gradient represents r, the internal resistance.
Emf is the potential difference of the source when there is no current flowing through it, and internal resistance is the resistance within the power source that resists current flow.
It is important to know the emf and internal resistance values of a source in order to determine how to get the source to provide maximum power to an electric circuit.
of the users don't pass the Emf and Internal Resistance quiz! Will you pass the quiz?
Start QuizHow would you like to learn this content?
94% of StudySmarter users achieve better grades.
Sign up for free!94% of StudySmarter users achieve better grades.
Sign up for free!How would you like to learn this content?
Free physics cheat sheet!
Everything you need to know on . A perfect summary so you can easily remember everything.
Be perfectly prepared on time with an individual plan.
Test your knowledge with gamified quizzes.
Create and find flashcards in record time.
Create beautiful notes faster than ever before.
Have all your study materials in one place.
Upload unlimited documents and save them online.
Identify your study strength and weaknesses.
Set individual study goals and earn points reaching them.
Stop procrastinating with our study reminders.
Earn points, unlock badges and level up while studying.
Create flashcards in notes completely automatically.
Create the most beautiful study materials using our templates.
Sign up to highlight and take notes. It’s 100% free.