StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

- Flashcards
- Notes
- Explanations
- Study Planner
- Textbook solutions

Electromagnetism

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Friction Force
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Air resistance and friction
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Faraday's Law
- Induced Currents
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Gravitational Force
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenOf all the achievements in scientific history, it is arguably our mastery of electromagnetism that best defines the modern age. It is through our research of this fundamental force that the wealth of technology we see in our day-to-day life was developed. In fact, the reverse is also true, many of the insights into electromagnetism have come about due to the work of ingenious inventions and feats of engineering. So as electromagnetism is such an important force in our daily lives, it makes sense to get to grips with the fundamentals of such a fascinating topic, right? Well, that's exactly what we're going to do in this article, so read on to uncover more about the historical theories that came to define electromagnetism as a pillar of modern physics, as well as what these theories tell us about electromagnetic fields and their applications.

Electromagnetism is the study of the electromagnetic force and associated phenomena such as electricity and magnetism. The electromagnetic force is one of the four fundamental forces (or interactions) of nature and is responsible for the interactions between electrically charged particles such as protons and neutrons. As we shall see in the next section, the electromagnetic force is also responsible for light waves and is a field that connects many seemingly disparate areas of science, such as optics, electrical engineering, and physical chemistry.

The core concept of electromagnetism is the **e****lectromagnetic field, **this is a type of vector field which interacts with charged particles producing a force on them. This field can be understood to be composed of coupled electric and magnetic fields.

The excitation of one field produces excitations in the other, and these excitations can propagate throughout space as electromagnetic radiation. In a vacuum, the oscillating electric and magnetic fields are always perpendicular to each other, and are both perpendicular to the direction of the travel making electromagnetic waves transverse. This electromagnetic radiation is the source of all visible light, as well other forms of radiation such as radio waves and microwaves.

The existence of electric and magnetic phenomena have been known about since antiquity, due to things like *lightning* and naturally occurring magnetic ores known as *lodestone*. For most of the history, electricity and magnetism were the subjects of much research. However, it was not until the mid 19th century that physicists started to investigate the possibility that electricity and magnetism may, in fact, be two sides of the same phenomenon. The relationship between the two was first established by Danish physicist Hans Christian Oersted, who found that a current-carrying wire deflected a magnetic needle away from true north, hence showing that electricity produced magnetic forces. This spurred on much research, culminating with Maxwell's equations, which gave a complete mathematical description of electric and magnetic fields and their relationship. These equations are the fundamental laws of electromagnetism, and the entirety of classical electromagnetism can be derived from them. Let's take a closer look at these incredibly important equations.

The complete theoretical description of electromagnetism developed by James Clerk Maxwell in the mid-1860s is widely regarded as the greatest achievement in classical physics. Whilst it took some years for Maxwell's equations to be experimentally proven and widely accepted, their influence on modern physics is undeniable. Maxwell's electromagnetism role as the first fundamental field theory and for establishing a theoretical basis for a finite speed of light proved hugely influential on both *Quantum Field Theory* and *Einstein's Relativity, *the two pillars of modern physics.

Let's take a look at exactly what Maxwell's equations are and what they tell us about electromagnetic fields.

The first of Maxwell's equations was first formulated by the German Mathematician Carl Friedrich Gauss and concerns the amount of electric flux through an arbitrary surface.

**Electric Flux \(\Phi_E\) **is a quantity measuring how much of an electric field 'flows' through a surface.

For a constant electric field, the flux is given by

\[\Phi_E=\vec{E}\cdot\vec{A}\]

where \(\vec{A}=A\vec{n}\) is the surface vector, with the surface area as magnitude and the direction being perpendicular to the surface.

If the electric field is not constant across a surface, then a surface integral is used to add up the components of the electric field across each infinitesimal section of surface area

\[\Phi_E=\int_S\vec{E}\cdot\mathrm{d}\vec{A}.\]

**Gauss' Law** states that the electric flux through a surface is directly proportional to the amount of charge \(Q\) within the volume enclosed by the surface, regardless of how the charge is distributed throughout the volume.

Mathematically, it can be expressed as\[\Phi_E=\int_S\vec{E}\cdot\mathrm{d}\vec{A}=\frac{Q}{\epsilon_0}.\]

This flux can be understood using electric field lines, the number of field lines passing through a surface indicates the amount of flux.

The second of Maxwell's equations is a crucial statement about the flux of magnetic fields.

It states that for any surface, the magnetic flux through that surface must be zero:

\[\Phi_B=\int_S\vec{B}\cdot\mathrm{d}\vec{A}=0.\]

This is best interpreted in terms of 'magnetic field lines', as saying that the number of magnetic field lines entering a surface must be equal to the number of field lines exiting the surface.

This can be seen in the field lines around a bar magnet, these field lines are always closed loops and so, no matter where you choose to draw the surface, the number of field lines entering will be equal to the number of field lines leaving.

This law ensures that magnetic monopoles cannot exist in nature; unlike the electric field which has individual charges as its sources and act as electric monopoles, magnetic field poles must always come in 'North-South' pairs as far as we know.

The third of Maxwell's equations is a formulation of the empirical law of electromagnetic induction, first discovered by Michael Faraday.

It states that the rate of change of magnetic flux is equal to the Electromotive Force (EMF) propelling a charge around the loop. This EMF can be written as a loop integral of the electric field around the closed path followed by a charge

\[\begin{align}\int_{\partial S}\vec{E}\cdot\mathrm{d}\vec{l}&=-\frac{\mathrm{d}}{\mathrm{d}t}\int_{S}\vec{B}\cdot\mathrm{d}\vec{A}\\&=-\frac{\mathrm{d}\Phi_B}{\mathrm{d}t},\end{align}\]

where \(\partial S\) is the loop enclosing the surface \(S\).

This law is especially important in electromagnetism, as it quantifies how changing magnetic fields induce changes in electric fields and vice versa.

The fourth and final Maxwell equation relates the magnitude of the induced magnetic field along a loop to the current flowing through the loop.

Note that this mathematical loop is simply imaginary and needn't refer to any sort of physical loop.

The origin of this law is in the work of French physicist Andre Ampère when investigating the magnetic force between two current carrying wires. Maxwell generalised this by including a term to account for the magnetic field produced by a changing electric flux:

\[\begin{align}\int_{\partial S}\vec{B}\cdot\mathrm{d}\vec{l}=\mu_0I+\mu_0\epsilon_0\frac{\mathrm{d}\Phi_E}{\mathrm{d}t}.\end{align}\]

The great achievement of Maxwell's equations was in demonstrating that light was, in fact, a consequence of oscillating electric and magnetic fields propagating through space. Maxwell found that by manipulating the equations the magnetic and electric fields satisfied standard wave equations, with the wave speed equal to \[c=\frac{1}{\sqrt{\mu_0\epsilon_0}}=3\times10^8\,\mathrm{m}\,\mathrm{s}^{-1}.\] This value was already known at the time to be the speed of light in a vacuum. Maxwell's equations also give a physical explanation for how light propagates; an initial oscillation in the magnetic field induces an oscillation in the electric field as per Faraday's Law, which in turn induces an oscillation in the magnetic field as per the Ampere-Maxwell Law. These oscillations back and forth between the two fields can then propagate infinitely through a vacuum as electromagnetic radiation.

Let's look at some example problems applying all the laws mentioned above.

Using Gauss's Law for Electric fields, derive Coulomb's Law and find an expression for Coulomb's constant \(k\).

To derive Coulomb's Law, we need to consider two charges \(q_1,q_2\) separated by some distance \(r\). By definition, the force experienced by \(q_2\) is determined by the Electric field \(\vec{E}_1\) produced by \(q_1\) as\[F=q_2E_1.\]

We can find an expression for this force by considering an imaginary sphere of radius \(r\) which encloses \(q_1\) but not \(q_2\).

Gauss's Law for Electric fields states that the flux \(\Phi_E\) of the electric field out of this sphere, found by integrating the field over the surface, is given by\[\Phi_e=\int_S\vec{E_1}\cdot\mathrm{d}\vec{A}=\frac{q_1}{\epsilon_0}.\]

If we assume that the electric field is spherically symmetric given, which is valid for stationary charges, then we can take the field vector out of the integrand

\[\int_S\vec{E_1}\cdot\mathrm{d}\vec{A}=\vec{E_1}\int_S\mathrm{d}\vec{A}.\]

The integral is then simply integrating over the surface vector, and is equal to the surface area of the sphere\[\vec{E_1}\int_S\mathrm{d}\vec{A}=\vec{E_1}4\pi r^2\vec{r}\]

where \(\vec{r}\) is the unit radial vector pointing away from the charge. Plugging this into Gauss's Law gives\[\begin{align}\vec{E_1}4\pi r^2\vec{r}&=\frac{q_1}{\epsilon_0}\\\vec{E_1}&=\frac{q_1}{4\pi\epsilon_0r^2}\vec{r}.\end{align}\]Applying this to the definition of the force gives\[F=q_2\vec{E_1}=\frac{q_1q_2}{4\pi\epsilon_0r^2}\vec{r}\]

which is Coulomb's law with \(k=\frac{1}{4\pi\epsilon}.\)

Consider a time dependent magnetic field defined by the function \(\vec{B}(t)=B\sin\left(2\pi t\right)\vec{z}\). If a circular loop of radius \(r=0.1\,\mathrm{m}\) is placed in the field such that its radial vector \(\vec{r}\) is at an angle of \(\theta=45^{\circ}\,\mathrm{deg}\) with the magnetic field direction \(\vec{z}\). What will the value of the induced EMF \(\mathcal{E}\) be?

Faraday's law tells us that the EMF induced by an oscillating magnetic field is proportional to the rate of change of the magnetic flux.

\[\mathcal{E}=-\frac{\mathrm{d}}{\mathrm{d}t}\int_{S}\vec{B}\cdot\mathrm{d}\vec{A}\]

Let's first find an expression for the magnetic flux. \[\begin{align}\Phi_B&=\int_{S}\vec{B}\cdot\mathrm{d}\vec{A}\\\\&=\int_SB\sin\left(2\pi t\right)\vec{z}\cdot\vec{A}\end{align}\]

From the definition of the dot product and the angle given in the question, we know\[\vec{z}\cdot\mathrm{d}\vec{A}=\cos\left(45\right)\mathrm{d}A=\frac{\sqrt{2}}{2}.\]

Note that the magnetic field is spatially independent, and so we can take it outside the integrand.

\[\Phi_B=\frac{\sqrt{2}}{2}B\sin\left(2\pi t\right)\int_{S}\mathrm{d}\vec{A}\]

The integrand now just gives the surface area enclosed by the circular loop, which is \(\pi r^2=\frac{\pi}{100}\,\mathrm{m}^2\):

\[\Phi_B=\frac{\sqrt{2}\pi}{200}B\sin\left(2\pi t\right).\]

To find the EMF, we need to take the derivative with respect to time\[\mathcal{E}=\frac{\mathrm{d}\Phi_B}{\mathrm{d}t}=\frac{\sqrt{2}\pi^2}{100}B\cos\left(2\pi t\right).\]

Whilst there are four fundamental forces of nature, it is only two of them that can be directly observed in our day-to-day lives. These are the electromagnetic force and gravity, and the study of these two forces has been central to physics for most of the history. These two forces share many similarities, and as gravity is often a more intuitive force, it can help to use it as an analogy when learning about electromagnetism. Let's take a look at some of the similarities of these two fundamental forces, before looking at the key differences which distinguish them.

Both forces have an infinite range, unlike the other fundamental forces (Strong and Weak Forces).

Whilst the forces have an infinite range, the strength of the forces follows a \(\frac{1}{r^2}\) law, meaning that the strength of the force reduces greatly with distance. This can be seen in Newton's Law of Gravitation as well as Coulomb's Law for Electric Forces\[F_{\text{G}}=\frac{Gm_1m_2}{r^2},\,F_{\text{E}}=\frac{kq_1q_2}{r^2}.\]

As can be seen in the equation for electric and gravitational forces, the effect of both Gravity and Electromagnetism produced by, and exerted on, a particle is defined by a specific property of the particle. This is mass \(m\) for Gravity and charge \(q\) for Electromagnetism, if a particle has mass and/or charge it will be affected by these fundamental forces.

However, it's important to also look at the differences between gravity and electromagnetism, as much of the structure of the universe relies on the unique properties of electromagnetism.

Gravity is a solely attractive force, whilst electromagnetic forces can be both attractive or repulsive depending on the signs of the charges. It's the repulsive electromagnetic force that is partially responsible for preventing all matter from collapsing in on itself under its own weight!

Mass is only ever a positive quantity, so all matter experiences the same kind of attractive force under gravity, just to varying strengths. However, electric charge can be either positive or negative, with like opposite charges being attracted towards one another whilst like charges repel each other.

Electromagnetism is a significantly stronger force than gravity, as can be seen by comparing the coupling constants of each force. The gravitational constant \(G=6.67\times10^{-11}\,\mathrm{N}\,\mathrm{m}^2\,\mathrm{kg}^{-2}\) is around \(20\) orders of magnitude smaller than Coulomb's constant \(k=9\times10^9\,\mathrm{N}\,\mathrm{m}^2\,\mathrm{C}^{-2}\). This disparity in strengths is what allows even relatively weak magnets to pick up objects despite the gravitational pull of the earth.

Gravity is a constant force that is only dependent on the mass of an object. However, when considering magnetic forces, the strength of the force is also dependent on the velocity of the charges.

Electromagnetism is absolutely crucial to our modern world and the technologies we use every day. It's thanks to our understanding of electromagnetism that we have been able to harness the power of electricity to power our homes and our schools and develop technologies such as computers and smartphones.

One particularly ingenious use of electromagnetism is in our ability to manipulate electromagnetic radiation in order to transfer information. For example, radio waves and microwaves produce the cellular data and Wi-Fi needed for your smartphone to access the internet. Radio transmitters use time-dependent alternating currents with composed of accelerating charges. Accelerating electric charges produce oscillating magnetic fields due to Ampere's Law. If the frequency of these oscillations is high enough, these magnetic fields will produce coupled oscillating electric fields and propagate away from the transmitter as electromagnetic radio waves. When these electromagnetic waves reach the antennae of a receiver, the oscillating magnetic field produces an oscillating EMF in the antennae (as per Faraday's Law) which re-produces the initial alternating current. This oscillating current can then be decoded to provide the information broadcasted in the radio signal, pretty incredible, right?

- Electromagnetism is the study of the electromagnetic force, one of the four fundamental forces or interactions of nature, responsible for interactions between charged particles.
- The electromagnetic field is made up of coupled electric and magnetic fields, with changes in one field inducing a change in the other.
- The precise mathematical theory of electromagnetism was developed by James Clerk Maxwell, and is summarized into four equations known as Maxwell's equations.
- Electromagnetism shares some key traits with gravity, such as an inverse square law for the force

- Fig. 1 - Lightning Pritzerbe 01 (MK) (https://commons.wikimedia.org/wiki/File:Lightning_Pritzerbe_01_(MK).jpg) by Mathias Krumbholz (https://commons.wikimedia.org/wiki/User:Leviathan1983) is licenced under CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/deed.en)
- Fig. 2 - Portrait of James Clerk Maxwell(https://commons.wikimedia.org/wiki/File:James_clerk_maxwell.jpg) is under Public Domain.
- Fig. 3 - Electric field lines around point charge, StudySmarter Originals.
- Fig. 4 - Mafnetic field (https://commons.wikimedia.org/wiki/File:Mafnetic_field.png) by Rajiv1840478 is licenced under CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)
- Fig. 5 - Gauss Law diagram, StudySmarter Originals.
- Fig. 6 - Antenna on the top of the building, Umag, Istria, Croatia (https://commons.wikimedia.org/wiki/File:Antenna_on_the_top_of_the_building,_Umag,_Istria,_Croatia.jpg) by Michal Klajban (https://commons.wikimedia.org/wiki/User:Podzemnik) is licenced under CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/deed.en)

Electromagnetism is the series of interactions and phenomenons which cover electrical charges, magnetic fields and electrical fields.

It is one of the most studied fields in science and engineering nowadays.

Radar and the phone are two real applications of electromagnetism.

More about Electromagnetism

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Over 10 million students from across the world are already learning smarter.

Get Started for Free