• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

Magnetic Flux and Magnetic Flux Linkage

Fields exist everywhere in space, unlike the forces that we use in simple problems of physics where they act only on a certain body. There is useful information we can extract from considering them in extended regions. For both the electric and magnetic fields it is useful to consider flux, which is a measure of the amount of field that…

Content verified by subject matter experts
Free StudySmarter App with over 20 million students
Mockup Schule

Explore our app and discover over 50 million learning materials for free.

Magnetic Flux and Magnetic Flux Linkage

Magnetic Flux and Magnetic Flux Linkage
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Fields exist everywhere in space, unlike the forces that we use in simple problems of physics where they act only on a certain body. There is useful information we can extract from considering them in extended regions. For both the electric and magnetic fields it is useful to consider flux, which is a measure of the amount of field that is crossing a certain surface.

Magnetic field and magnetic flux

As we already know, magnetic phenomena can be described using a time-dependent field extended in space. We will denote this field by the letter B.

Since the field is extended in space we can actually restrict ourselves to a certain surface and only consider the effect of the magnetic field. As we will see in the following section, Faraday's law concerns magnetic fluxes, so we now present its definition for the case of a uniform magnetic field.

The magnetic flux is the amount of magnetic field that crosses perpendicular to a certain surface.

The magnetic flux can be computed as follows:

\[\Phi = \vec{B} \cdot \vec{A} = |\vec{B}| \cdot |\vec{A}| \cdot \cos(\theta)\]

Here, the dot indicates a scalar product and the vector A carries the value of a certain area and is directed in the direction of the normal vector of the surface. The symbol | | indicates the modulus of the vector and θ represents the angle between the normal vector and the magnetic field vector. See the image below for clarification:

Magnetic Flux and Magnetic Flux Linkage Scalar product StudySmarter

Orientation-dependent magnetic flux through a flat surface. www.physicsbootcamp.org

In complex settings, the magnetic field is not uniform and the surface is not flat (which leads to the use of integrals and characterisations that are out of the scope of this article). We will only consider flat surfaces and uniform magnetic fields. This will result in a dependence of the magnetic flux on the angle between the magnetic field and the surface.

Faraday's law

Faraday's law is an experimental law that was later mathematically formalised and incorporated as part of what we now know as Maxwell's laws. It relates a concept from the electric field, the potential difference, with magnetic flux.

In particular, it relates the electromotive force (EMF) to the rate of change of magnetic flux. The electromotive force is the energy needed per unit of charge to establish a certain electric potential difference between two points and is usually denoted by the letter ε.

The mathematical description of Faraday's law is:

\[\varepsilon = - \frac{d \phi}{dt}\]

where there is a derivation with respect to the time of the flux. Although this description is very general, if we restrict ourselves to the aforementioned case of uniform magnetic field and a fixed area, we arrive, due to the expression of the scalar product, at the following equation:

\[\varepsilon = \omega \cdot |\vec{B}| \cdot |\vec{A}| \cdot \sin(\theta)\]

where ω is the angular velocity of the changing angle. The image below is an experimental setup for producing an electromotive force using a certain moving surface and a uniform magnetic field.

Magnetic flux and flux linkage  Faraday's law  StudySmarter

Experimental set-up for Faraday's law. openpress.usask.ca

What is magnetic flux linkage?

The equations that govern the behaviour of the electromagnetic field (Maxwell's laws) are linear, which means that we can consider the superposition of different fields that fulfill the same equations. If we are considering an experimental setup that generates an electromotive force, a simple quantity can help in increasing the output of electromotive force; this is what we call linkage. The magnetic flux linkage is measured in units of Webers \(\mathrm{Wb}\) just like magnetic flux.

Experimental setting of magnetic flux linkage

Imagine the setting we had before: a coil rotating in the presence of a magnetic field. The variation of magnetic flux induces an electromotive force. If we now take the same setting with N coils, we can create N different surfaces so the electromotive force is multiplied by a factor of N. This is what we call flux linkage.

Mathematical description of magnetic flux linkage

The mathematical description of flux linkage is based on Faraday's law. Again, since we are considering simple settings, we'll restrict ourselves to the case where we have N identical coils and this number remains constant. Furthermore, they are all synchronised and have the same three-dimensional orientation. This leads to the following increase of the flux:

\[\phi_L = N \cdot \phi \Rightarrow \varepsilon_L = N \cdot \varepsilon\]

where ϕL is the total magnetic flux linkage resulting from N coils and εL is the total electromotive force associated. Combining this with Faraday's law gives us the equation for magnetic flux linkage\[\phi_L=N\cdot|B|\cdot|A|\cdot\sin\left(\theta\right)\]

By doing this, we can manage to increase the potential difference with a simple addition of similar coils we can connect to the same circuit setup.

We are now going to consider several examples of experimental setups. The magnetic field present has a value of 10 Teslas, while the area of the coils we are using is 1 m2. We are rotating the coil with an angular velocity of 2 rad/s.

Imagine the magnetic field is directed in the x-axis, that is:

\(\vec{B} = (10,0,0)T\)

On the other hand, the normal vector evolves in the following way:

\(\vec{A} = (\cos(2 \cdot t), \sin(2 \cdot t), 0) m^2\)

where t is the time. This yields the following expression for the magnetic flux:

\(\phi = \vec{B} \cdot \vec{A} = 10 \cdot \cos(2 \cdot t) Wb\)

This allows us to easily compute:

\(\varepsilon = - \frac{d \phi}{dt} = - \frac{d}{dt} (10 \cdot \cos(2 \cdot t)) = 20 \cdot \sin(2 \cdot t) V\)

Below you will find a graph showing the time evolution of the magnetic flux and the generated electromotive force.

Magnetic Flux and Magnetic Flux Linkage Electromotive Force Evolution StudySmarter.

Temporal evolution of the magnetic flux (red) and the electromotive force (blue).

If we had managed to increase the magnetic field or make the surface of the coil bigger, we could also have generated an electromotive force, since we are varying the magnetic flux over time.

If we now consider 20 identical coils rotating synchronously, the graph of the time dependence for the magnetic flux density and the electromotive force would look like this:

Magnetic flux and magnetic flux linkage Magnetic flux linkage StudySmarter

Comparison between a set-up with 1 coil and with 20 coils. In the horizontal axis, time is represented and in the vertical axis, the electromotive force

We see here that the values of the total flux (and, then, of the EMF) have significantly grown by using only 19 extra coils.

We briefly turn to the case now for a static surface and a varying magnetic field. If now the field starts with an initial value of 0 Teslas, but continues to grow with time in the following manner:

\(\vec{B} = (10 \cdot t, 0,0) T\)

Consider a surface whose normal vector is:

\(\vec{A} = (1,0,0)m^2\)

We should arrive at the following expression for the magnetic flux:

\(\phi = \vec{B} \cdot \vec{A} = 10 \cdot t \space Wb\)

This expression's time derivative gives the expression for the electromotive force, that is:

\(\varepsilon = -\frac{d \phi}{dt} = - \frac{d}{dt}(10 \cdot t) = -10 \space V\)

It would generate a constant electromotive force between the extreme points of the coil. Of course, we could use several coils to build a magnetic flux linkage and increase the output.

In fact, when we use several coils, it is usual to vary the magnetic field and not the orientation to generate an electromotive force. This is the reason why we usually associate the concept of magnetic flux and Faraday's law with only one rotating coil, while the concept of flux linkage usually designates several static coils in the presence of a magnetic field.

Magnetic Flux and Magnetic Flux Linkage - Key takeaways

  • Magnetic flux is a quantity that measures the amount of magnetic field crossing perpendicular to a certain surface.
  • Faraday's law establishes a relationship between a force creating a difference in electromagnetic potential and the variation of magnetic flux over time.
  • Faraday's law applies whenever at least one of these three varies over time: the intensity of the magnetic field, the area it goes through, or the orientation of the surface with respect to the field.
  • The situation where there are several coils through which a magnetic field goes is called flux linkage. The flux increases proportionally.

Frequently Asked Questions about Magnetic Flux and Magnetic Flux Linkage

No, magnetic flux density designates the vector strength of the magnetic field, which we usually call B. The magnetic flux linkage is the growth of magnetic flux by having different surfaces crossed by a magnetic field.

The magnetic flux is a scalar quantity measuring the amount of magnetic field crossing a certain surface. The magnetic flux linkage is the growth of this magnetic flux by considering several surfaces.

The equation for the magnetic flux linkage is: ΦL=N⋅Φ, where Φ is the magnetic flux and N is the number of coils.

Magnetic flux linkage is measured in Webers (Wb).

Final Magnetic Flux and Magnetic Flux Linkage Quiz

Magnetic Flux and Magnetic Flux Linkage Quiz - Teste dein Wissen

Question

Choose the correct option.

Show answer

Answer

The magnetic field is a vector field.

Show question

Question

Choose the correct statement.

Show answer

Answer

The magnetic flux is a quantity that measures the amount of magnetic field crossing a certain surface.

Show question

Question

Choose the correct statement.

Show answer

Answer

Faraday's law states that an electromotive force appears when the magnetic flux changes over time.

Show question

Question

Choose the correct option.

Show answer

Answer

Magnetic flux linkage refers to an experimental setup where several coils are used to increase the net flux.

Show question

Question

Choose the correct statement.

Show answer

Answer

The magnetic flux is zero when the magnetic field is parallel to the surface.

Show question

Question

What is the magnetic flux?

Show answer

Answer

It is a quantity measuring the amount of magnetic field crossing a certain surface.

Show question

Question

What are the three basic variable elements in the expression for the magnetic flux?

Show answer

Answer

Strength of magnetic field, area of the surface and relative orientation.

Show question

Question

Can the magnetic flux be calculated only for flat surfaces?

Show answer

Answer

No.

Show question

Question

What is the usual experimental setup for generating an oscillating electromotive force?

Show answer

Answer

A rotating coil.

Show question

Question

What is the usual varying quantity in the magnetic flux when considering several coils?

Show answer

Answer

The strength of the magnetic field.

Show question

Question

In which units is the magnetic field measured?

Show answer

Answer

Teslas.

Show question

Question

In which unit is the magnetic flux measured?

Show answer

Answer

In Webers.

Show question

Question

Are the units of the magnetic flux different from the magnetic flux linkage?

Show answer

Answer

No, they are the same.

Show question

Question

What is one way to increase the output values of an experimental setup with one coil and a magnetic field?

Show answer

Answer

Increase the number of coils.

Show question

Question

Is Faraday's law a Maxwell law?

Show answer

Answer

Yes.

Show question

More about Magnetic Flux and Magnetic Flux Linkage
60%

of the users don't pass the Magnetic Flux and Magnetic Flux Linkage quiz! Will you pass the quiz?

Start Quiz

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

94% of StudySmarter users achieve better grades.

Sign up for free!

94% of StudySmarter users achieve better grades.

Sign up for free!

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

Free physics cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Access cheat sheet

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Start learning with StudySmarter, the only learning app you need.

Sign up now for free
Illustration