StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

- Flashcards
- Notes
- Explanations
- Study Planner
- Textbook solutions

Fluids

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Friction Force
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Air resistance and friction
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Faraday's Law
- Induced Currents
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Gravitational Force
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenFluid is a term that refers to any form of matter which flows. In the science community, fluids embody a wide range of concepts. We demonstrate many of these concepts subconsciously in our everyday lives. For example, adding ice to our warm drinks displays the concept of density. A hot bath after a long day demonstrates Archimedes' principle. Pouring milk into a glass verse water demonstrates the viscosity. These are only a few examples of small-minute tasks we perform every day that demonstrate fluids. Therefore, keeping these examples in mind, let's use this article as a starting point in understanding some different concepts related to fluids.

Fluids, i.e., liquids or gases, are systems of particles that easily move and change position.

**Fluids **are substances with no distinct shape and change easily relative to the presence of external pressure.

The study of fluids is known as **fluid mechanics**. Fluid mechanics focus on the forces that arise due to the behavior of fluids. Fluid mechanics is divided into two parts: fluid statics and fluid dynamics. **Fluid statics** is the study of incompressible fluids at rest. In contrast, **f****l****uid dynamics is **the study of fluids in motion.

To study the behavior and forces produced by fluids, we look at properties such as density, temperature, pressure, viscosity, specific volume, and specific gravity.

**Density,**\( \rho\), is the amount of mass present in a substance per unit volume. Its corresponding formula is \( \rho=\frac{m}{V} \), where \( m\) is mass and \( V \) is volume.**Pressure, \( P \),**is the force exerted on a fluid per unit area.Pressure, due to gravity, exerted on a fluid at any point is called

*Hydrostatic pressure*. The formula corresponding to hydrostatic pressure is \( P= {\rho}gh \), where \( P\) is fluid pressure, \( \rho\) is density, \( g\) is the acceleration due to gravity, and \( h\) is the depth of the fluid.*Gauge Pressure*is the difference between total pressure and atmospheric pressure. Its corresponding formula is \( P_G=P_T - P_A \), where \( P_G\) represents gauge pressure, \( P_T \) represents total pressure, and \( P_A\) represents atmospheric pressure.*Absolute pressure*is the sum of gauge pressure and atmospheric pressure.

**Temperature**is a thermodynamic property indicating how hot or cold a fluid is. Temperature refers to the average kinetic energy within a substance.**Viscosity**is a*inviscid fluid.***Specific Volume**is the ratio of a substance's volume to mass. It is the reciprocal of density. Its corresponding formula is \( v=\frac{V}{m}=\frac{1}{\rho} \).**Specific Weight**is the weight per unit volume. Its corresponding formula is \( \gamma =\rho{g} \). Note that this property varies with temperature.

Fluids are broken down into multiple categories depending on different properties, such as flow or viscosity. Flow refers to the action of moving.

Type | Description |

Steady or Unsteady | Steady flows indicate that conditions such as velocity and pressure vary but do not change with respect to time. In contrast, unsteady suggests that, at some point, these conditions change with respect to time. |

Uniform or Non-uniform | Uniform flow indicates that the velocity of a fluid has the same magnitude and direction at all points within the fluid. Non-uniform flow indicates that velocity does not have the same magnitude or direction at all points within the fluid. |

Compressible or Incompressible | Compressible fluids are fluids whose volume and density change due to pressure. Incompressible fluids are fluids whose volume and density do not change due to pressure. |

Viscous or Non-viscous | Viscous refers to a substance with a thicker consistency due to internal friction. Viscous fluids resist motion. Non-viscous fluids move easily and have a thinner consistency. |

Newtonian or Non-Newtonian | Newtonian fluids have constant viscosity, while non-Newtonian fluids do not have constant viscosity. |

Besides being aware of fluid properties and categories, one should also be aware of two key concepts associated with fluids.

Buoyancy and Archimedes' principle.

Conservation of energy and the Bernoulli equation.

Buoyancy is the tendency for objects to float within a fluid.

**Buoyancy** is the upward force that fluids exert on a fully or partially submerged object.

On a microscopic level, fluids consist of atoms that are bound together. Due to a fluid's ability to move, when an object is placed inside a fluid, the atoms are pushed aside and bend around the object. Since the fluid wants to be back in its original state, the atoms exert interatomic electric forces to push against the object, which causes an upward buoyant force. To fully understand buoyancy, we must discuss Archimedes' principle, which is the physical law of buoyancy.

**Archimedes' principle** states that the upward *buoyant force* on a fully or partially submerged object is equal to the **weight of the fluid** that the object displaced.

To better understand this principle, let's look at the following example of a cube submerged in water, where we have simplified the forces due to the pressure of the water into a single downward force and a single upward force.

Force is equal to pressure, \( P \) times the area, \( A \), where the pressure is being exerted.

$$F=PA.$$

Now we know that pressure is equal to the density of the fluid times gravity times the height of the fluid.

$$P=\rho_\mathrm{f}gh.$$

Therefore, we can express the force acting on the top and bottom of the cube as follows:

$$F_1=\rho_\mathrm{f}gh_1A,$$

$$F_2=\rho_\mathrm{f}gh_2A.$$

To find the buoyant force, we must find the difference between the force acting on the top and the force acting on the bottom.

$$F_2-F_1=\rho_\mathrm{f}g(h_2-h_1)A.$$

where \( h_2-h_1 \) is the height of the cube. When we multiply this by the area of the face of the cube, \( A \), we get the volume of the cube, \(V_\mathrm{f}\), or in this case, the amount of water displaced by the cube. Consequently, we can derive the following equation for the buoyant force,

$$F_\mathrm{b}=\rho_\mathrm{f}V_\mathrm{f}g,$$

and as we know that mass is equal to density times volume, we can substitute mass into the equation. This yields the equation

$$F_\mathrm{b}=m_\mathrm{f}g,$$ and since weight is equal to mass times gravity, the above result indicates that the buoyant force is equal to the weight of the displaced fluid, as stated by Archimedes' principle.

An important equation associated with fluids is Bernoulli's equation which describes the conservation of energy in fluid flow. This equation emphasizes the relationship between velocity and pressure. It states that when discussing moving fluids, a point where velocity is low means that the pressure is high, and a point where velocity is high, pressure is low.

$$\text{Bernoulli's Equation} \rightarrow P_1 + \frac{1}{2}\rho{v_1}^2 + {\rho}gh_1=P_2 + \frac{1}{2}\rho{v_2}^2 + {\rho}gh_2.$$

To help our understanding, let's look at the following example and derive the Bernoulli equation.

To derive this equation, three assumptions are made.

A streamlined flow indicates that all particles in the fluid follow the same path.

Constant density which indicates an incompressible fluid.

No viscosity while moving.

In order to proceed, we must calculate the work required to move a volume of fluid from one position to another. Note that the fluid at point one travels a distance of \( \Delta{l}_1 \) while the fluid at point two travels a distance of \( \Delta{l}_2 \).

**Step 1**: Calculate the work done on the fluid at point one at its cross-sectional area, \( A_1 \), by the fluid to the left of it. The fluid to the left of point one forces the fluid to move toward point two.

$$W_1= F_1\Delta{l}_1= P_1A_1\Delta{l}_1.$$

**Step 2**: Calculate the work done at point two on its cross-sectional area, \( A_2\). Work here will be negative because the force acting on the fluid is opposite to the motion of the fluid.

$$W_2= -F_2\Delta{l}_2= -P_2A_2\Delta{l}_2.$$

**Step 3**: Calculate the work done by the fluid against gravity.

$$W_3= -mg(y_2-y_1)=-mg\Delta{y}.$$

**Step 4**: Calculate the total work done on the system.

\begin{align}W_T&= W_1 + W_2 + W_3\\W_T&= P_1{A_1}\Delta{l}_1 -P_2{A_2}\Delta{l}_2 -mg\Delta{y}\\\end{align}

Now recall the *work-energy theorem, *which states that the total kinetic energy, where kinetic energy is \( K=\frac{1}{2}m{v^2}\), of a system, is equal to the total work done on that system. Hence, this yields the equation

$$\frac{1}{2}m{v_2}^2-\frac{1}{2}m{v_1}^2=P_1A_1\Delta{l}_1 -P_2A_2\Delta{l}_2 -mg\Delta{y},$$

where we can write mass in terms of density and volume using the density equation, \( \rho=\frac{m}{V}\implies m=\rho{V} \), and replace the term \( A{\Delta{l}} \) by \( V\) because the product of those two terms gives us volume.

$$\frac{1}{2}\rho{V}{v_2}^2 - \frac{1}{2}\rho{V}{v_1}^2 = P_1{V}-P_2{V} - \rho{V}g\Delta{y}.$$

The \( V's \) will cancel out, thus yielding the equation,

$$P_1 + \frac{1}{2}\rho{v_1}^2 + {\rho}gh_1=P_2 + \frac{1}{2}\rho{v_2}^2 + {\rho}gh_2,$$

which is Bernoulli's equation. However, two key points to recognize and understand are that this equation only holds true if our assumptions hold true and that since we used the work-energy theorem, we can logically deduce that this equation is essentially derived as a result of the conservation of energy.

When parallel objects slide past one another, this action is known as shearing. This phenomenon occurs in fluids and results in shearing stress.

**Shearing stress** is a force acting parallel to the surface, which causes a breakdown of structure.

Shearing stress is one of two types of stress fluids undergo. In physics, stress refers to a force per unit area acting on an infinitesimal surface. Stresses are vector quantities and are divided into normal stresses and tangential stresses. Normal stresses include pressures that act inward and perpendicular to the surface. Tangential stresses include shear stresses. The main reason shear stresses are present in fluids is friction due to viscosity. Fluids cannot resist shear stress. This means that when shear stress is applied to a fluid at rest, the fluid moves as it is unable to remain at rest.

Reading scientific jargon to fully understand scientific concepts, like fluids, is sometimes hard to wrap your mind around. Hence, let's discuss two easy experiments that can help you better understand concepts like Archimedes' principle and the principle behind Bernoulli's equation.

To visualize Archimedes' principle, take a glass of warm water and put a grape in the water. The grape sinks because it is denser than the water. However, if we add salt to the water, the grape begins to float. Recall that Archimedes' principle states that if an object's weight is more than its own volume when placed in a fluid, the object sinks. Adding salt to the water increases the water's mass per unit volume until it is equal to or greater than the density of the grape, thus allowing the grape to float.

To demonstrate the principles behind Bernoulli's equation, we can perform some balloon magic. This idea requires us to blow up two balloons of the same size and attach strings of the same length to each balloon. Using tape, we attach the balloons to the underside of the top part of our door frame. Make sure the balloons are separated by some distance. Finally, take a hairdryer and blow a steady stream of air in between the balloons using both the low and high settings. What do you see? On the low setting, the balloons most likely did not move too much. However, on the high setting, did you notice that the balloons move toward one another without being touched? This effect is Bernoulli's principle, which demonstrates that the air surrounding the balloons is exerting the same amount of pressure on all sides of the balloon. By blowing more forcible air between the balloons, an area of low pressure is created. Faster-moving air creates less pressure. Therefore, the pressure between the balloons decreased compared to when balloons were at rest with no airflow separating them. As a result, the balloons move toward each other as high pressure pushes low pressure.

As we discussed fluids and some key corresponding concepts, let's complete some quick examples to drive home what we've learned.

An object has a mass of \( 15\,\mathrm{kg}. \) If it occupies a volume of \( 4.6\,\mathrm{m^3} \) calculate the density of this object.

Answer:

\begin{align}\rho&=\frac{m}{V},\\\rho&=\frac{15\,\mathrm{kg}}{4.6\,\mathrm{m^3}},\\\rho&=3.3\,\mathrm{\frac{kg}{m^3}}.\\\end{align}

The density of this particular object is \( 3.3\,\mathrm{\frac{kg}{m^3}}. \)

Let's try a slightly more complicated example.

On one end of a pipe, point A, water flows at a speed of \( 6\,\mathrm{\frac{m}{s}} \) with a pressure of \( 400,000\,\mathrm{Pa}\). At the other end, point B, the water flows at a speed of \( 12\,\mathrm{\frac{m}{s}} \). Calculate the water pressure at point B. Density of water is \( 1000\,\mathrm{\frac{kg}{m^3}} \).

Answer:

Based on this problem, we know that we will need the Bernoulli equation, \( P_1 + \frac{1}{2}\rho{v_1}^2 + {\rho}gh_1=P_2 + \frac{1}{2}\rho{v_2}^2 + {\rho}gh_2\), because we are dealing with pressure and velocity. However, since the height of the pipe is not given, we can assume that height does not change, thus cancel allowing those terms to cancel out, which yields the equation, $$P_1 + \frac{1}{2}\rho{v_1}^2 _1=P_2 + \frac{1}{2}\rho{v_2}^2.$$ Now, inserting our given values, we can calculate the pressure at point B as follows. \begin{align}P_1 + \frac{1}{2}\rho{v_1}^2 &=P_2 + \frac{1}{2}\rho{v_2}^2,\\(400,000\,\mathrm{Pa})+\frac{1}{2}\left(1000\,\mathrm{\frac{kg}{m^3}}\right)\left(6\,\mathrm{\frac{m}{s}}\right)^2&=P_2+\frac{1}{2}\left(1000\,\mathrm{\frac{kg}{m^3}}\right)\left(12\,\mathrm{\frac{m}{s}}\right)^2,\\418,000&=P_2 +72,000,\\P_2&= 346,000\,\mathrm{Pa}.\\\end{align}

Therefore, the water pressure at point B is \(346,000.\)

**Fluids**are substances with no distinct shape and change easily relative to the presence of external pressure.- The study of fluids is known as fluid mechanics, which focuses on the forces that arise due to the behavior of fluids.
- To study the behavior and forces produced by fluids, we look at properties, such as density, temperature, pressure, viscosity, specific volume, and specific gravity.
- Fluids are broken down into multiple categories depending on different properties such as flow or viscosity.
- Two key concepts associated with fluids are:
- Buoyancy and Archimedes' principle.
- Conservation of energy and the Bernoulli equation.

**Shearing stress**is a force acting parallel to the surface, which causes a breakdown of structure.

- Fig. 1 - Archimedes' principle, StudySmarter Originals.
- Fig. 2 - Bernoulli's equation, StudySmarter Originals.
- Fig. 3 - Pipe and pressure, StudySmarter Originals.

**Fluids **are substances with no distinct shape and change easily relative to the presence of external pressure.

More about Fluids

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Over 10 million students from across the world are already learning smarter.

Get Started for Free