StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

Suggested languages for you:

Americas

Europe

- Flashcards
- Notes
- Explanations
- Study Planner
- Textbook solutions

Geometrical and Physical Optics

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Friction Force
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Air resistance and friction
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Faraday's Law
- Induced Currents
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Gravitational Force
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Did you know that roughly 90 million years ago our early ancestors used to have ultraviolet vision? As time went on, our eyesight shifted into the current ability to see the visual spectrum, which is the primary light we focus on in optics. Considering light's dual nature of behaving like a wave or a particle depending on the circumstances, two different field of optics developed. Geometric optics is a simple model of light which treats light consisting of rays that travel in straight lines, assuming that light travels in rays and can be reflected and refracted the boundaries between optical media. Physical optics, on the other hand, deals with the wave properties and phenomena of light such as interference and diffraction. In this article, we will establish the key differences between the two branches of optical physics!

As the title implies, geometric and physical optics both stem from the same branch of science - optical physics, but they describe different properties of light, and so as you might expect, the situations in which they are applied differ depending on the aspect of the physical system under consideration. To begin with, let's define what exactly optics is before delving into the specifics of each field.

**Optics** is the study of the behavior and characteristics of light.

Understanding how light behaves in different media and developing various instruments, such as mirrors, lenses, and interferometers, to further apply this knowledge to our everyday lives is a critical aspect of this physical science.

There are a number of different properties of light, but usually they can be categorized into two main types: particle phenomena and wave phenomena. Let's recall a critical property that light possesses - wave-particle duality.

**Wave-particle duality** states that the behavior of light can be described as either a particle or a wave.

Depending on the circumstances, sometimes it makes more sense to describe light as electromagnetic radiation that propagates through a medium in the form of a wave. Meanwhile, other phenomena, such as the photoelectric effect, can only be explained by considering light as a particle which we call a **photon**. So it makes sense to separate optics into two separate branches, focusing on different properties of light and with different applications.

We have already established that besides the fact that geometric and physical optics deal with light, they will have varying applications. Let's look at each field separately so we can *illuminate *the distinction between the two closely related models of light phenomena.

Geometric optics, also known as **ray optics**, is used when light waves interact with objects much greater than the wavelength of the visible light (\(400-700 \, \mathrm{nm}\)), therefore, utilizing the particle nature of light.

**Geometrical optics** are used when dealing with the transmission of light in rays.

An important aspect of geometrical optics is the image formation using light rays and devices such as lenses, mirrors, and prisms.

A** ray of light** is a hypothetical line representing a path along which light energy is transferred.

Rays realistically represent the observations made by scientists, but considering it is an abstraction, certain assumptions have to be made:

In a consistent environment, the light rays travel in a straight line.

If the light rays approach some optical aperture, they are stopped.

Light rays can be absorbed, reflected or refracted.

If light rays cross one another, no changes occur.

The main properties to focus on are **reflection** and **refraction**, whilst interference and diffraction are disregarded as we ignore the wave properties of light and instead are described using physical optics.

In contrast to geometric optics, physical optics focuses on the wave nature of light.

**Physical optics** is used when dealing with the inherent nature and properties of light.

As a result, another term used to describe physical optics is *wave optics*.

A **wave** is a disturbance that moves through a medium or a vacuum and transmits energy.

In this context, light is a transverse electromagnetic (EM) wave in which the oscillations of the electric and magnetic field are perpendicular to the direction of travel of the wave. While mechanical waves such as sound require a medium to travel through, light is an EM wave; therefore it can travel through a vacuum as well, with a maximum speed of \(c=3\times10^8\, \frac{\mathrm{m}}{\mathrm{s}}\). The speed can be determined in other mediums, all we need to know is the frequency \(f\) and the wavelength \(\lambda\) of the wave.

The main properties studied by physical optics are **interference**, **diffraction**, and **polarization**, which we'll discuss in greater detail in the next section.

We already touched upon certain aspects each branch of optics focuses on, let's look at each of these concepts in more depth.

Imagine turning on a torch and pointing it at a flat mirror perpendicular to its surface. In this case, we'll be able to trace the overall path of the light as a straight line approaching the surface of the mirror and then *reflecting *off of it.

**Reflection** is the change in direction of a light ray, as it strikes a surface made up of a different medium to the medium it is initially travelling in.

So the light was initially traveling through air, and then bounced off of the mirror. Based on the **law of reflection**, the angle of reflection is always the same as the angle of incidence with respect to the *normal*, which is the line perpendicular to the surface. All of this occurs in the same plane.

Depending on the curvature of the mirror (i.e. flat, concave, or convex), the path of the rays will differ!

Now, let's say we direct the ray of light toward a still body of water. Some of the light will reflect off the surface, following the law of reflection stated previously. However, some of the light will transmit through the water. Water is much denser than air, so the path of the light will become redirected or *refracted*.

**Refraction** is the bending of light as it passes from one transparent medium into another.

The ability of certain materials to bend light is described using *Snell's law *and the refractive index \(n\), with the mathematical expression for both defined in the formula table later in the article.

The** refractive index **is a quantity associated with a specific optical medium and measures the amount of bending of light that occurs as the rays pass from one medium into another.

It's a dimensionless quantity, which depends on the velocity of light \(v\) in the specific medium. The more 'optically dense' the medium is, the more particles that get in the way of the light ray, resulting in a larger refractive index.

The refractive index for vacuum is \(n_\text{vacuum}=1\), while that of water is \(n_\text{water}=1.33\).

Both of these properties are visualized in Figure \(1\) below.

In this diagram, the incident ray of light is passing from a less dense medium \(n_1\) (e.g. air) into a more dense medium \(n_2\) (e.g. water).

Similarly, geometrical optics is used to analyze the rays of light interacting with various **lenses**, **mirrors** and **prisms**. There are two types of lenses and mirrors - **concave** and **convex**, with different properties and applications. Mathematically, they can be analyzed using the thin lens equation and the magnification equation, while graphically, we can determine the types of images formed in each case by drawing a ray diagram. More in-depth information on the various properties of different lenses is available in the thin lenses and the reflection in spherical surfaces explanations here on StudySmarter!

When light waves hit a bubble, we sometimes observe colorful patterns on it's surface. This is a result of *interference*, one of the properties studied in physical optics.

**Interference** occurs when two or more waves superimpose to form a new wave.

The resultant wave and its amplitude will depend on the relative phase of the waves. *Constructive interference*** **will occur

Interference is demonstrated in *Young's double slit experiment* and is also demonstrated by diffraction gratings. As the light passed through two narrow slits, instead of seeing two bright spots corresponding to the slits, an interference pattern of waves overlapping and canceling one another is observed. The process of light encountering the slits and spreading out is known as *diffraction*.

**Diffraction **is the bending of light as it reaches an obstacle.

Diffraction will only occur if the slit width is similar in size to the wavelength of the light source. The equation used to mathematically describe a diffraction grating can be found in the formula table below.

All the most commonly used formulas in both, geometrical and physical optics, are compiled in the table below. For the purposes of this article, we will not go into too much detail about each equation. They will be discussed in more detail in other explanations here on StudySmarter.

Name | Equation | Variables |

Snell's law | $$n_1\sin\theta_1=n_2\sin\theta_2$$ | \(n_1\) - incident index\(\theta_1\) - incident angle\(n_2\) - refracted index\(\theta_2\) - refracted angle |

Refractive index | $$n=\frac{c}{v}$$ | \(n\) - index of refraction\(c\) - speed of light \(v\) - velocity in a substance |

Thin lens equation | $$\frac{1}{s_\mathrm{i}}+\frac{1}{s_\mathrm{o}}=\frac{1}{f}$$ | \(s_\mathrm{i}\) - image distance \(s_\mathrm{o}\) - object distance \(f\) - focal length |

Magnification of a thin lens | $$M=\frac{h_\mathrm{i}}{h_\mathrm{o}}=\frac{-s_\mathrm{i}}{s_\mathrm{o}}$$ | \(M\) - magnification\(h_\mathrm{i}\) - image height\(h_\mathrm{o}\) - object height\(s_\mathrm{i}\) - image distance\(s_\mathrm{o}\) - object distance |

Wave equation | $$ v = f \lambda $$ | \(v\) - velocity \(f\) - frequency\(\lambda\) - wavelength |

Interference (double slit, diffraction grating) | $$d\sin\theta=m\lambda$$ | \(d\) - separation\(\theta\) - angle\(m\) - an integer\(\lambda\) - wavelength |

Path difference equation - constructive interference | $$\Delta L=m\lambda$$ | \(\Delta L\) - distance \(m\) - an integer\(\lambda\) - wavelength |

Path difference equation - destructive interference | $$\Delta L=\left (m + \frac{1}{2} \right )\lambda$$ | \(\Delta L\) - distance \(m\) - an integer\(\lambda\) - wavelength |

Example problems applying some of these formulas can be found later in this explanation.

Now that we've established what the main differences between geometric and physical optics are, let's apply this knowledge to some example problems!

One of the applications of geometric optics is obtaining and analyzing the images formed by thin lenses.

Firstly, let's look at the converging lens visible in Figure \(3\) below, and find the image this lens would form!

**Solution**

To locate the image formed by this convex lens, we must draw a ray diagram. A minimum of two rays must be used to find their point of intersection, indicating the highest point of the image (the lowest point will be on the principal axis as that's where the object is rested). First of all we need to know some basic principles which we can follow which will tell us how to draw the path of light rays passing through the lens:

- Rays
*parallel*to the principal axis will always pass through the lens in such a manner that they pass through the focus of the lens. - Rays that are
*colinear*with the principal axis will not be refracted by the lens as they are incident perpendicular to the surface of the lens. These rays pass in a smooth straight line, through the centre of the lens, intercepting the optical axis at a right-angle, before passing through the focus of the lens.

So, let's draw:

- Ray 1 parallel to the principal axis until it reaches the optical axis and then straight through the focus \(F\).
- Ray 2 passing straight through the center of the lens, where the optical and principal axis cross.

as visualized in Figure \(4\) below.

When a light ray passes through the center of a lens, it experiences no refraction; hence the ray travels in one smooth straight line. For the remaining rays, in this case, we chose to draw a parallel ray of light, which refracts at the optical axis and passes through the focus. However, we also could've drawn a ray going through the focus on the object side, where light would refract and continue parallel to the principal axis on the other side of the lens.

This ray diagram provides us with a lot of information about the image obtained. For instance, we can see that it is flipped upside down or *inverted***, **as well as appears smaller than the object itself, or in other words, it is *diminished*. Since the image is inverted, we can conclude that it is also *real*.

**Real** images can be projected onto a screen as they form on the *opposite *side of the object, while **virtual** images cannot as they are formed *behind* a lens.

All of these characteristics depend on the type of lens used and the location of the object regarding the focus of the lens. So, if this was a concave lens, the image would be *virtual *and *upright*.

Secondly, let's say that the object in Figure \(3\) is \(3\,\mathrm{cm}\) high and is located \(16.0 \, \mathrm{cm}\) away from the lens with a focal length of \(6.00 \, \mathrm{cm}\). Calculate the height of the image and how far away from the lens it forms!

**Solution**

To find the image distance \(s_\mathrm{o}\) we can use the following equation:

$$\frac{1}{s_\mathrm{i}}+\frac{1}{s_\mathrm{o}}=\frac{1}{f}.$$

By rearranging the thin lens equation and plugging in our values for object distance and focal length, we get

\begin{align} \frac{1}{s_\mathrm{i}}&=\frac{1}{f}-\frac{1}{s_\mathrm{o}} \\ \frac{1}{s_\mathrm{i}}&=\frac{1}{6.00 \, \mathrm{cm}}-\frac{1}{16.0 \, \mathrm{cm}} \\ \frac{1}{s_\mathrm{i}}&= 0.104\,\mathrm{cm} \\ {s_\mathrm{i}}&= 9.62 \,\mathrm{cm}. \end{align}

The positive value for image distance confirms our ray diagram results: the image is located on the opposite side of the lens and is **inverted**.

Now we can use the magnification equation

$$M=\frac{h_\mathrm{i}}{h_\mathrm{o}}=\frac{-s_\mathrm{i}}{s_\mathrm{o}}$$

to find the height of this image. We were given the height of the object and the object distance, and the image distance was calculated using the thin lens equation, so we get

\begin{align} h_\mathrm{i}&=\frac{-s_\mathrm{i} \, h_\mathrm{o}}{s_\mathrm{o}} \\ h_\mathrm{i}&= -\frac{(9.62 \, \mathrm{cm})(3 \, \mathrm{cm})}{(16.0 \, \mathrm{cm})} \\ h_\mathrm{i}&=-1.80 \, \mathrm{cm},\end{align}

where the negative sign implies that the image is inverted (as we established earlier using the ray diagram).

Now, let's look at an example problem applying the concepts of physical optics.

Monochromatic light with a wavelength of \(610 \, \mathrm{nm}\) falls normally on a diffraction grating with \(100\) lines per \(\mathrm{mm}\). Find the angle of the third order maximum.

**Solution**

First, we must calculate the separation distance \(d\) between the slits. We are told that there are \(N=100\) lines in every millimeter which converted to SI units is equivalent to \(10^{5}\) lines in every meter, so we can use the following equation

\begin{align} d&=\frac{1}{N} \\ d&=\frac{1}{10^5 \, \frac{\text{lines}}{\mathrm{m}}}=10^{-5} \, \mathrm{m}. \end{align}

To find the angle \(\theta\) of the third order (\(m=3\)) we rearrange the interference equation

$$ d\sin\theta=m\lambda$$

and plug in our values:

\begin{align} \sin\theta_3 &= \frac{m\lambda}{d} \\ \sin\theta_3 &= \frac{(3) (610\times 10^{-9} \, \cancel{\mathrm{m}})}{\left (10^{-5} \, \cancel{\mathrm{m}} \right )} \\ \sin\theta_3 &=0.183 \\ \theta_3 &= \sin^{-1}(0.183)=10.5^{\circ}. \end{align}

So, the angle of the third order maximum is equal to \(10.5^{\circ}\).

- Optics is the study of the behavior and characteristics of light.
- Wave-particle duality states that the behavior of light can be described as either a particle or a wave.
- Geometric optics treats light as consisting of abstract rays which are perpendicular to the wavefronts of a wave and travel in straight lines in homogenous media.
- Physical optics are used when dealing with the inherent nature and properties of light.
- Some geometrical optics applications include explaining reflection, refraction, and behavior of light in lenses and mirrors.
- Reflection is the change in direction of a light ray, as it strikes a surface made up of a different medium.
- Refraction is the bending of light as it goes from one transparent medium into another.
- Some physical optics applications are interference and diffraction.
- Interference occurs when two or more waves superimpose to form a new wave.
- Diffraction is the bending of light as it reaches an obstacle.

- Fig. 1 - The reflection and refraction of light in different mediums, StudySmarter Originals.
- Fig. 2 - Constructive and destructive interference, StudySmarter Originals.
- Fig. 3 - Converging lens ray diagram setup, StudySmarter Originals.
- Fig. 4 - Converging lens ray diagram, StudySmarter Originals.

More about Geometrical and Physical Optics

60%

of the users don't pass the Geometrical and Physical Optics quiz! Will you pass the quiz?

Start QuizBe perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Over 10 million students from across the world are already learning smarter.

Get Started for Free