• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

Estimation of Errors

To estimate the error in a measurement, we need to know the expected or standard value and compare how far our measured values deviate from the expected value. The absolute error, relative error, and percentage error are different ways to estimate the errors in our measurements.Error estimation can also use the mean value of all the measurements if there is no…

Content verified by subject matter experts
Free StudySmarter App with over 20 million students
Mockup Schule

Explore our app and discover over 50 million learning materials for free.

Estimation of Errors

Estimation of Errors
Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

To estimate the error in a measurement, we need to know the expected or standard value and compare how far our measured values deviate from the expected value. The absolute error, relative error, and percentage error are different ways to estimate the errors in our measurements.

Error estimation can also use the mean value of all the measurements if there is no expected value or standard value.

The mean value

To calculate the mean, we need to add all measured values of x and divide them by the number of values we took. The formula to calculate the mean is:

\[\text{mean} = \frac{x_1 + x_2 + x_3 + x_4 + ...+x_n}{n}\]

Lets say we have five measurements, with the values 3.4, 3.3, 3.342, 3.56, and 3.28. If we add all these values and divide by the number of measurements (five), we get 3.3764.

As our measurements only have two decimal places, we can round this up to 3.38.

Estimation of errors

Here, we are going to distinguish between estimating the absolute error, the relative error, and the percentage error.

Estimating the absolute error

To estimate the absolute error, we need to calculate the difference between the measured value x0 and the expected value or standard xref:

\[\text{Absolute error} = |x_0 - x_{ref}|\]

Imagine you calculate the length of a piece of wood. You know it measures 2.0m with a very high precision of ± 0.00001m. The precision of its length is so high that it is taken as 2.0m. If your instrument reads 2.003m, your absolute error is | 2.003m-2.0m | or 0.003m.

Estimating the relative error

To estimate the relative error, we need to calculate the difference between the measured value x0 and the standard value xref and divide it by the total magnitude of the standard value xref:

\[\text{Relative error} = \frac{|x_0 - x_{ref}|}{|x_{ref}|}\]

Using the figures from the previous example, the relative error in the measurements is | 2.003m-2.0m | / | 2.0m | or 0.0015. As you can see, the relative error is very small and has no units.

Estimating the percentage error

To estimate the percentage error, we need to calculate the relative error and multiply it by one hundred. The percentage error is expressed as error value%. This error tells us the deviation percentage caused by the error.

\[\text{Percentage error} = \frac{|x_0 - x_{ref}|}{|x_{ref}|} \cdot 100 \%\]

Using the figures from the previous example, the percentage error is 0.15%.

What is the line of best fit?

The line of best fit is used when plotting data where one variable depends on another one. By its nature, a variable changes value, and we can measure the changes by plotting them on a graph against another variable such as time. The relationship between two variables will often be linear. The line of best fit is the line that is closest to all the plotted values.

Some values might be far away from the line of best fit. These are called outliers. However, the line of best fit is not a useful method for all data, so we need to know how and when to use it.

Obtaining the line of best fit

To obtain the line of best fit, we need to plot the points as in the example below:

Estimation of Errors, Plotted data with variance, StudySmarter

Fig. 1 - Data plotted from several measurements showing variation on the y-axis

Here, many of our points are dispersed. However, despite this data dispersion, they appear to follow a linear progression. The line that is closest to all those points is the line of best fit.

When to use the line of best fit

To be able to use the line of best fit, the data need to follow some patterns:

  1. The relationship between the measurements and the data must be linear.
  2. The dispersion of the values can be large, but the trend must be clear.
  3. The line must pass close to all values.

Data outliers

Sometimes in a plot, there are values outside the normal range. These are called outliers. If the outliers are fewer in number than the data points following the line, the outliers can be ignored. However, outliers are often linked to errors in the measurements. In the image below, the red point is an outlier.

Estimation of Errors, Plotted data with outlier, StudySmarter

Fig. 2 - Data plotted from several measurements showing variation on the y-axis in green and an outlier in pink

Drawing the line of best fit

To draw the line of best fit, we need to draw a line passing through the points of our measurements. If the line intersects with the y-axis before the x-axis, the value of y will be our minimum value when we measure.

The inclination or slope of the line is the direct relationship between x and y, and the larger the slope, the more vertical it will be. A large slope means that the data changes very fast as x increases. A gentle slope indicates a very slow change of the data.

Estimation of Errors, Line of best fit, StudySmarter

Figure 3 - The line of best fit is shown in pink, with the slope being shown in light green

Calculating uncertainty in a plot

In a plot or a graph with error bars, there can be many lines passing between the bars. We can calculate the uncertainty of the data using the error bars and the lines passing between them. See the following example of three lines passing between values with error bars:

Estimation of Errors, Plot showing uncertainty approximations, StudySmarter

Fig. 4 - Plot showing uncertainty bars and three lines passing between them. The blue and purple lines begin at the extreme values of the uncertainty bars

How to calculate the uncertainty in a plot

To calculate the uncertainty in a plot, we need to know the uncertainty values in the plot.

  • Calculate two lines of best fit.
  • The first line (the green one in the image above) goes from the highest value of the first error bar to the lowest value of the last error bar.
  • The second line (red) goes from the lowest value of the first error bar to the highest value of the last error bar.
  • Calculate the slope m of the lines using the formula below.

\[m = \frac{y_2 - y_1}{x_2-x_1}\]

  • For the first line, y2 is the value of the point minus its uncertainty, while y1 is the value of the point plus its uncertainty. The values x2 and x1 are the values on the x-axis.
  • For the second line, y2 is the value of the point plus its uncertainty, while y1 is the value of the point minus its uncertainty. The values x2 and x1 are the values on the x-axis.
  • You add both results and divide them by two:

    \[\text{Uncertainty} = \frac{m_{red}-m_{green}}{2}\]

Lets look at an example of this, using temperature vs time data.

Calculate the uncertainty of the data in the plot below.

Estimation of Errors. Plot showing uncertainty approximations. StudySmarter

Figure 6. Plot showing uncertainty bars and three lines passing between them. The red and green lines begin at the extreme values of the uncertainty bars. Source: Manuel R. Camacho, StudySmarter.

The plot is used to approximate the uncertainty and calculate it from the plot.

Time (s)
20
40
60
80
Temperature in Celsius
84.5 ± 1
87 ± 0.9
90.1 ± 0.7
94.9 ± 1

To calculate the uncertainty, you need to draw the line with the highest slope (in red) and the line with the lowest slope (in green).

In order to do this, you need to consider the steeper and the less steep slopes of a line that passes between the points, taking into account the error bars. This method will give you just an approximate result depending on the lines you choose.

You calculate the slope of the red line as below, taking the points from t=80 and t=60.

\(\frac{(94.9+1)^\circ C - (90.1 + 0.7)^\circ C}{(80-60)} = 0.255 ^\circ C\)

You now calculate the slope of the green line, taking the points from t=80 and t=20.

\(\frac{(94.9- 1)^\circ C - (84.5 + 1)^\circ C}{(80-20)} = 0.14 ^\circ C\)

Now you subtract the slope of the green one (m2) from the slope of the red one (m1) and divide by 2.

\(\text{Uncertainty} = \frac{0.255^\circ C - 0.14 ^\circ C}{2} = 0.0575 ^\circ C\)

As our temperature measurements take only two significant digits after the decimal point, we round the result to 0.06 Celsius.

Estimation of Errors - Key takeaways

  • You can estimate the errors of a measured value by comparing it to a standard value or reference value.
  • The error can be estimated as an absolute error, a percentage error, or a relative error.
  • The absolute error measures the total difference between the value you expect from a measurement (X0) and the obtained value (Xref), equal to the absolute value difference of both Abs = | X0-Xref|.
  • The relative and percentage errors measure the fraction of the difference between the expected value and the measured value. In this case, the error is equal to the absolute error divided by the expected value \(rel = \frac{Abs}{X_0}\) for the relative error, and divided by the expected value and expressed as a percentage for the \(\text{percentage error per} = \Big(\frac{Abs}{X_0} \Big) \cdot 100\). You must add the percentage symbol for percentage errors.
  • You can approximate the relationship between your measured values using a linear function. This approximation can be made simply by drawing a line, which must be the line that passes closest to all values (the line of best fit).

Frequently Asked Questions about Estimation of Errors

The line of best fit is the line that best approaches all data points in a plot, thus serving as an approximation of a linear function to the data.

The term ‘error estimation’ refers to the calculation of errors introduced when we measure and use values that have errors in calculations or plots.

Final Estimation of Errors Quiz

Estimation of Errors Quiz - Teste dein Wissen

Question

We can estimate errors by their absolute value. What are the other two methods?

Show answer

Answer

Relative value and percentage value.

Show question

Question

What does it mean to estimate errors by their absolute value?

Show answer

Answer

It means calculating the difference between the expected value and the measured one.

Show question

Question

How can we calculate the percentage error from the relative error?

Show answer

Answer

By multiplying the relative error by 100 and expressing it in %.

Show question

Question

How do we calculate the relative error?

Show answer

Answer

Calculate the absolute error and divide it by the reference or expected value.

Show question

Question

What happens if you do not have a reference or expected value?

Show answer

Answer

The mean value of your measurements is used as a substitute.

Show question

Question

What is the relative and the absolute error if you measure 1.001m knowing your measurements should be 1.0m?

Show answer

Answer

0.001m.

Show question

Question

Can you always use the line of best fit technique?

Show answer

Answer

No, you can’t.

Show question

Question

Can you use the line of best fit for non-linear data?

Show answer

Answer

Yes, you can.

Show question

Question

What is the absolute error if you measured a length of 2.34m knowing the object measures exactly 2.345m?

Show answer

Answer

0.005.

Show question

Question

What is the relative error if you measured a length of 2.34m knowing the object measures exactly 2.345m?

Show answer

Answer

0.0021.

Show question

Question

What is the percentage error if you measured a length of 2.34m knowing the object measures exactly 2.345m?

Show answer

Answer

0.21%.

Show question

Question

Calculate the absolute relative and percentage errors in the following scenario: weighing an object, you obtain a weight of 13.45kg knowing the object’s true weight to be 13.34kg.

Show answer

Answer

Absolute: 0.11kg, relative 0.0082, percentage: 0.82%.

Show question

Question

Is the relative error usually smaller than the absolute error?

Show answer

Answer

Yes, it is.

Show question

Question

What is an outlier?

Show answer

Answer

All of these.

Show question

Question

Can you ignore an outlier?

Show answer

Answer

Yes, you can.

Show question

Question

Can you calculate the uncertainty from data in a plot?

Show answer

Answer

Yes, you can.

Show question

60%

of the users don't pass the Estimation of Errors quiz! Will you pass the quiz?

Start Quiz

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

94% of StudySmarter users achieve better grades.

Sign up for free!

94% of StudySmarter users achieve better grades.

Sign up for free!

How would you like to learn this content?

Creating flashcards
Studying with content from your peer
Taking a short quiz

Free physics cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Access cheat sheet

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.

Start learning with StudySmarter, the only learning app you need.

Sign up now for free
Illustration