StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

We hear the word momentum a lot, especially in sports. When a team, for instance, is playing well and winning games consistently, we say that team has momentum. While we may not use this word in a quantitative sense in everyday life, momentum is actually related to mathematics when it comes to physics.Any object with mass that is moving has momentum. In…

Content verified by subject matter experts

Free StudySmarter App with over 20 million students

Explore our app and discover over 50 million learning materials for free.

Momentum

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Generators
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Famous Physicists
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Equipotential Surface
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Expansion
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Eddy Current
- Faraday's Law
- Induced Currents
- Inductance
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nuclear Reaction
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Hooke's Law
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Spectral Colour
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenWe hear the word momentum a lot, especially in sports. When a team, for instance, is playing well and winning games consistently, we say that team has momentum. While we may not use this word in a quantitative sense in everyday life, momentum is actually related to mathematics when it comes to physics.

Any object with mass that is moving has momentum. In this explanation, we look at objects moving linearly. So what is linear momentum?

**Linear momentum **is the product of the mass and velocity of an object.

The momentum of any object depends on two things: mass and velocity. We can express it mathematically as:

\[p = m \cdot v\]

Here, p is the momentum, m is the mass measured in kilograms (kg), and v is the velocity measured in metres per second (m/s). Momentum is a **vector quantity with units of kg⋅m/s**. As we can see from the equation, an object’s momentum will increase if its velocity increases (directly proportional relationship). The more momentum an object has, the more force it needs to stop.

Suppose you are driving a car that has a certain momentum. That momentum will depend on the mass of the car and the velocity at which it is moving. Now, let’s say that you want to bring the car to a stop. How would you do it?

First, you will slam on the brakes, which will quickly bring the car to rest via the large **deceleration force** applied. The deceleration force it takes to stop the car depends on the momentum of the car.

Another way to bring the car to rest is to take the foot off of the pedal and let **friction** come into play. In this scenario, a small amount of force is applied over a long duration of time.

Either way, the moving car will come to a rest, but what is this force that is required to bring a moving body to rest? This is called the **i****mpulse.**

**Impulse **is the **change of momentum** of an object when a force is applied over a certain duration of time.

The units of impulse are Newton seconds (N·s). As a result, the **area under a force-time graph will yield the impulse** or change in momentum.

The** impulse-momentum theorem** simply states that the **change in impulse is equal to the change in momentum**.

We express this mathematically as follows:

\[F \Delta t = \Delta p\]

If we further break down the change in momentum, we get:

\[F \Delta t = mv_f - mv_i\]

Here, mv_{f} is the final momentum and mv_{i} is the initial momentum.

The rate of change of momentum can be expressed as:

\[F = \frac{m(v-u)}{\Delta t}\]

Here, v is the final velocity and u is the initial velocity.

Just like in chemistry, we have the law of conservation of matter, and in physics, we have the law of conservation of energy. We can extend these concepts to form another law known as the law of conservation of momentum.

**Conservation of linear momentum**:** **The total momentum in an isolated system where no external forces occur is conserved. The total momentum before the collision between two objects will be equal to the total momentum after the collision. The total energy is also conserved for such a system.

Suppose you have two objects of masses m_{1} and m_{2} heading towards each other with velocities u_{1} and u_{2}.

Two objects about to collide

Both objects collide with each other after some time and exert forces F_{1} and F_{2} on each other.

When the objects collide, they exert a force on each other, causing them to stop for an instant

After the collision, the two objects will move in the opposite direction with velocities v_{1} and v_{2} respectively.

After the collision, both objects move in the opposite direction with different velocities, Usama Adeel – StudySmarter Originals

As the law of conservation of linear momentum states that the momentum of the colliding objects is conserved, we can derive the following equation:

\[F_1 = -F_2\]

\[\frac{m_1(v_1-u_1)}{t_1} = - \frac{m_2(v_2 - u_2)}{t_2}\]

Since t_{1} and t_{2} are the same because both objects collided for the same amount of time, we can reduce the equation to

Rearranging the above yields

\[m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2\]

This equation states the conservation of linear momentum (i.e the total momentum before the collision is equal to the total momentum after the collision). After impact, the **velocities change but the masses remain constant**.

Not every collision results in objects moving apart separately. There are scenarios, for example, where the objects collide and sometimes combine, forming new objects. Keep in mind that the **linear momentum is conserved in any type of collision**.

A** collision **happens** **whenever an object in motion comes into contact with another object that is at rest or in motion.

Pool balls on a table.

With elastic collisions, the objects that come into contact **remain separate**. In other words, the objects don’t combine to form a new object. The **total kinetic energy and momentum are conserved** in this type of collision, which is why the objects bounce off one another **without the loss of any energy**.

Now, you might be wondering, *whenever someone kicks a ball, the foot of the person doesn’t** go off in a separate direction *(that would be terrible if it did!). So, what kind of a collision is this?

**Many collisions are not perfectly elastic**, like a soccer player kicking a ball for instance. But, the foot of the player and the ball do remain separate after the player kicks the ball. Before a player kicks the ball, the ball is at rest and the foot moves with a high velocity. After the player kicks the ball, the ball goes in the direction in which it is kicked.

We refer to all these scenarios as **nearly elastic collisions **because some form of **energy is converted** to sound or heat, etc.

In these types of collisions, the **objects collide ****and move together as one mass**. When we examine perfectly inelastic collisions, we can treat the two separate objects as a **single object** **after the collision**. Hence, in terms of momentum:

\[p_1 + p_2 = p_{total}\]

\[m_1v_1 + m_2+v_2 = (m_1+m_2)v_f\]

Note that v_{f} will depend on the magnitudes and directions of the two initial velocities.

Sometimes, we can approximate car crashes as perfectly inelastic collisions where the **total momentum is conserved**. However, the **total energy is not conserved** because some energy is converted into sound, heat, and internal energy. The crashed cars will never return to their original position after the collision, which is why these types of collisions are named inelastic.

- With elastic collisions, the total momentum and total energy are conserved.
- With inelastic collisions, the total momentum is conserved but the total energy is not conserved.

In real life, no collision is elastic or perfectly inelastic but is somewhere in between, which we can simply label as **inelastic collisions** because they imply that some energy is lost as a result of the collisions. However, we often approximate a collision to either of the extremes to make the calculations simpler.

- Momentum is the product of the mass and velocity of an object.
- The higher the momentum, the more force will be required to stop an object.
- Impulse is the force applied over a certain interval of time.
- The impulse-momentum theorem states that impulse is the change in momentum. The area under a force-time graph gives the impulse.
- The law of conservation of momentum states that the total momentum before the collision between two objects is the same as the total momentum after the collision.
- With elastic collisions, the total momentum and total energy are conserved.
- With inelastic collisions, the total momentum is conserved but the total energy is not conserved.

An elastic collision between two particles with the same mass, one of which is at rest. https://commons.wikimedia.org/wiki/File:Elastic_collision.svg

Momentum is a measure of how a body with mass moves with velocity.

More about Momentum

How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

94% of StudySmarter users achieve better grades.

Sign up for free!94% of StudySmarter users achieve better grades.

Sign up for free!How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

Free physics cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.