StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

In everyday life, we interchangeably use distance, displacement, speed, velocity, acceleration, etc. To physicists, all quantities, whether static or in motion, can be differentiated by classifying them as either scalars or vectors.A quantity with a magnitude (size) only is referred to as a scalar quantity. Mass, energy, power, distance, and time are some examples of scalar quantities because they have…

Content verified by subject matter experts

Free StudySmarter App with over 20 million students

Explore our app and discover over 50 million learning materials for free.

Scalar and Vector

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Generators
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Famous Physicists
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Equipotential Surface
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Expansion
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Eddy Current
- Faraday's Law
- Induced Currents
- Inductance
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nuclear Reaction
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Hooke's Law
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Spectral Colour
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenIn everyday life, we interchangeably use distance, displacement, speed, velocity, acceleration, etc. To physicists, all quantities, whether static or in motion, can be differentiated by classifying them as either scalars or vectors.

A quantity with a **magnitude (size) only** is referred to as a **scalar quantity**. Mass, energy, power, distance, and time are some examples of scalar quantities because they have no direction associated with them.

A quantity that has a **magnitude and a direction** associated with it is a **vector quantity**. Acceleration, force, gravity, and weight are some vector quantities. All vector quantities are associated with a specific direction.

As we’ve already stated, a quantity with a magnitude and a direction is known as a vector quantity.

Weight is an example of a vector quantity because it is a product of mass and acceleration due to gravity. The **acceleration of gravity has a direction that is vertically downwards**, which makes weight a vector quantity.

Let's look at some examples of scalars and vectors.

Suppose you have a box and you move it by a distance of 5 meters.

Figure 1. A movement of an object from point A to point B in a specified direction is a vector.

If you tell somebody that the **distance **between points A and B is 5 meters, you are talking about a **scalar quantity** because you are **not specifying any direction**. Five meters is just a magnitude (distance), and the direction could be any. So, distance is a scalar quantity.

However, if you tell someone **you moved the box 5 meters to the right (east)**, as depicted in figure 1, you are now talking about a **vector quantity**. Why? Because you have **now specified a direction associated with the movement**. And in physics, this is referred to as **displacement**. Hence, displacement is a vector quantity.

Now let’s say it took you 2 seconds to move the box to the right.

Figure 2. Diagram showing a displacement vector relative to time.

If you were to calculate how quickly you moved the box, you are **calculating the speed of the movement**. In the above example, the speed is:

\(Speed = \frac{5 \space m}{2 \space s} = 2.5 \space m/s\)

The **speed is a scalar quantity **as it does not have any direction.

However, if you say the **box moved with a speed of 2.5m/s to the right**, this becomes a **vector quantity**. The **speed with a direction is velocity,** and a change in velocity is, in turn, known as acceleration (m/s^{2}), which is also a vector quantity.

Scalar | Vector |

distance | displacement |

speed | velocity and acceleration |

The mass and weight of a body may seem the same, but they are not.

Mass: The **quantitative measure of inertia of a body**, which is the tendency of a body to resist the force that can cause a change in its speed or position. Mass has an SI unit of kilograms.

Weight: The **gravitational pull acting on a mass. **It has an SI unit of Newtons.

Mass does not have any direction, and it will be the same no matter where you are in the universe! So we can categorise **mass as a scalar quantity**.

Weight, on the other hand, is the force acting on an object, and since force has a direction, **weight is a vector quantity**.

Another way to look at this is if you place one object on Earth and another object with the same mass on the Moon. Both objects will have the same mass but a different weight due to the gravitational pull on the Moon (1.62 m/s^{2}), which is smaller compared to Earth.

We can represent vectors with an arrow, as shown below.

Figure 3. Representation of a vector. Wikimedia Commons

The length depicts the magnitude, the tail is the initial point of a vector, the sense of a vector is given by the order of two points on a line parallel to the vector, and the orientation tells you at which angle the vector is pointing. The combination of orientation and sense specify the direction of the vector.

Let’s look at some examples of how to perform vector addition.

Say you have two vectors of 10N and 15N, and both are pointing towards the east. The sum of these vectors becomes 25N towards the east.

Figure 4. Vectors in the same direction are added.

Now, if we change the direction of the 15N towards the west (-15 N), the **resultant vector** becomes -5 N (pointing towards the west). A **vector quantity can have positive and negative signs**. The sign of a vector shows that the direction of the vector is the opposite of the reference direction (which is arbitrary).

Figure 5. Vectors in the opposite direction are subtracted.

Now, of course, all vector additions are not as straightforward as shown above. What would you do if the two vectors were perpendicular to each other? This is where we need to improvise a little bit.

With this rule, we can calculate the resultant vector by **joining the tail of the first vector with the head of the second vector**. Take a look at the figures below.

Figure 6. Perpendicular vectors are joined via the head-to-tail rule.

A vector force of 30 N acts in the east direction, while a vector force of 40 N acts in the north direction. We can calculate the resultant vector by joining the tail of the 30 N vector with the head of the 40 N vector. The vectors are perpendicular, so we can **use the Pythagorean theorem** to solve the resultant vector as shown in figure 7.

Figure 7. Vector perpendicular addition.

With a bit of trigonometry and applying the Pythagorean theorem, the resultant vector becomes 50 N. Now, as we discussed, a vector quantity has a magnitude as well as a direction, so we can calculate the angle of the 50 N vector by using an inverse tangent of 40/30 (perpendicular/base). The angle is then 53.1° from the horizontal for the above example.

Using the same example from above, what if we only had the 50N vector force with an angle from the horizontal and were asked to find its horizontal and vertical components?

Splitting a single vector into two or more vectors that produce a similar effect to the original vector is called the **resolution of vectors**.

Let’s have a look at an example to explain this concept further.

Suppose a vector force F of 150N is applied at an angle of 30 degrees from the surface.

Figure 8. Vector at an angle.

We can split the vector F into a horizontal component (Fx) and a vertical (Fy) component as depicted below:

Figure 9. Resolution of vectors.

Calculating Fx and Fy by using trigonometry gives us:

\[F_x = \cos(30) \cdot F = 129.9 \space N\]

\[F_y = \sin(30) \cdot F = 75 \space N\]

As you might have figured out by now, calculations in physics are never this straightforward! Not every surface is horizontal – sometimes surfaces may be at an incline, and you have to calculate and resolve components along an inclined plane.

Figure 10. The direction of weight on an inclined plane.

Figure 10 shows a box on a surface at an angle θ from the horizontal. The weight of the box, mg, is acting downwards with a mass m and the gravitational pull g.

If we split the mg vector into the horizontal and vertical components,

- the
**vertical component will be perpendicular**to the inclined surface, and - the
**horizontal component of mg will be parallel**to the inclined surface.

Figure 11. Resolution of mg vector on an inclined surface.

The θ angle between the mg and mgcosθ will be the **same as the inclined surface angle** from the horizontal. The force that will accelerate the box down the slope will be **mgsin****θ**** (Fg)**, and the reaction force **Fn** (from Newton’s third law) will be equal to **mgcos****θ**. Hence,

\[F_g = m \cdot g \cdot \sin(\theta)\]

\[F_n = m \cdot g \cdot \cos(\theta)\]

Figure 12. Resolution of vectors and direction of motion on an inclined plane.

If forces are acting on a body and the body is stationary or moving with a **constant velocity** (not accelerating), such an instance is called **equilibrium**. The lines of forces must pass through the same point for an object to be in equilibrium.

In the diagram below, a uniform ladder is leaning against a smooth wall (no friction). The ladder’s weight acts downwards, and the normal reaction force acts at an angle of 90° from the wall.

Figure 13. A ladder leaning against a wall is an example of a body in equilibrium.

If you extend these forces, you will see that they cross at a certain point. Because the object is in equilibrium, the force from the ground must also pass through the same point as the other forces do.

Figure 14. Lines of forces intersect at a common point if a body is in equilibrium.

By resolving the force from the ground into its vertical and horizontal components, the normal reaction force from the ground acts upwards, and the friction force from the ground acts along the surface.

Figure 15. Resultant of the friction and ground vectors.

In essence, what happens is that all the forces cancel each other.

- The normal force from the wall (right force) = frictional force acting along the ground (left force).
- Weight from the ladder (downward force) = reaction force from the ground (upward force).

- A scalar quantity has a magnitude only, whereas a vector quantity has a magnitude and a direction.
- A vector can be represented with an arrow.
- To find the resultant vector, vectors in the same direction are added, whereas vectors in the opposite direction are subtracted.
- The resultant vector of two vectors can be calculated with the head-to-tail rule, and the resultant vector of perpendicular vectors can be calculated with the Pythagorean theorem.
- If a vector is at an angle to the horizontal (or vertical), it can be resolved into its x and y components.
- The line of forces must intersect at a common point and cancel each other out for an object to be in equilibrium.

Force is a vector quantity.

No, power is not a vector quantity. It is a scalar quantity.

Speed is a scalar quantity. Velocity is a vector quantity.

More about Scalar and Vector

How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

94% of StudySmarter users achieve better grades.

Sign up for free!94% of StudySmarter users achieve better grades.

Sign up for free!How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

Free physics cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.