StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Half-life is a measure of the time it takes a radioactive sample to decrease its mass or quantity by half and, among other things, its danger. However, the half-life isn’t just about the danger of radioactive substances – we can also use it for many other applications, such as carbon-14 dating techniques.There are certain elements in nature whose atoms have an excess of particles or…

Content verified by subject matter experts

Free StudySmarter App with over 20 million students

Explore our app and discover over 50 million learning materials for free.

Half Life

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Generators
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Famous Physicists
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Equipotential Surface
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Expansion
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Eddy Current
- Faraday's Law
- Induced Currents
- Inductance
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nuclear Reaction
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Hooke's Law
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Spectral Colour
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenHalf-life is a measure of the time it takes a **radioactive sample to decrease ****its mass or quantity by half**** **and, among other things, its danger. However, the half-life isn’t just about the danger of radioactive substances – we can also use it for many other applications, such as carbon-14 dating techniques.

There are certain elements in nature whose atoms have an **excess of particles or energy**, making them **unstable**. This instability causes nuclei to emit particles to achieve a stable state with a different number or configuration of particles in the nucleus.

The **emission of particles** **by nuclei **is known as **nuclear decay** (or radioactive decay). It is a quantum effect whose characterisation for samples with a large number of atoms is very well known.

The consequence of decay being a quantum effect is that it occurs with a certain probability. This means that we can only speak about the** probability** of a certain decay happening over a certain period.

For instance, if we predict that the probability of a particular nucleus decaying into another one is 90% after one day, it may happen in one second or one week. However, if we have a lot of identical nuclei, 90% of them will have decayed after one day.

This is the general equation that models this effect:

\[N(t) = N_0 \cdot e^{-\lambda t}\]

N(t) is the number of unstable nuclei at time t, N_{0} is the initial number of unstable atoms in our sample, and λ is the decay constant, which is characteristic of each decay process.

See our article on Radioactive Decay for a graph and more examples.

**Half-life **is the time it takes a sample of a certain unstable isotope to **half its number of unstable nuclei**.

At first, this concept seems odd since we would expect that the time it takes for a sample to lose half of its components is constant. We are used to a constant rate of phenomena, like losing a fixed amount of unstable nuclei in a certain period. However, the equation implies that this is not the case for nuclear decay.

Suppose we look at a sample at a specific time t_{1 }> 0 and then at a later time t_{2 }> t_{1}.* *If we want to find the ratio of the number of unstable atoms in the sample, we only need to divide their expressions:

\[\frac{N(t_2)}{N(t_1)} = \frac{N_0 \cdot e^{-\lambda t_2}}{N_0 \cdot e^{-\lambda t_1}} = e^{-\lambda (t_2-t_1)}\].

This relation gives us two important (related) facts:

- The ratio between the numbers of unstable nuclei at two different times is
**independent of the initial number of unstable nuclei**. Since the decay constant for a specific element is given, we know that for a specific time interval t1 - t2, the number of unstable nuclei will decrease in the same percentage (ratio). - Given that the percentage decrease of unstable nuclei is the same for a fixed interval, the
**decrease is much faster at earlier times**because the total number of unstable nuclei is bigger.

When we divide the number of unstable atoms at different times for a **fixed interval**, we obtain the** same quantity**.

- For instance, if we consider time intervals of 1 second, we can divide the amount at 1 second by the amount at 0 seconds and obtain 1/2. If we do the same with the amounts at 2 seconds and 1 second, we obtain the same rate, and so on.

These quantities reflect that the **percentual decrease is constant for fixed time intervals**. For one second, the percentual decrease is 50%, while for 2 seconds, it has a value of 75%, and so on.

The percentual decrease also has a relevant effect regarding the total number of unstable atoms in the sample, which shows us that the **rate of decrease of the total number of unstable nuclei is faster at earlier times**.

- For instance, if we consider time intervals of 1 second, the number of unstable atoms decreases by 5 during the first second, while the decrease is only 2.5 for the next second. If we consider two seconds, the decrease will be 7.5 for the first second and 1.875 for the next two seconds.

This is why radioactive samples become **less and less dangerous as time passes**. Although their perpetual decay rate is constant (which is helpful for applications like date samples), the **absolute number of decays decreases with time**. Since fewer atoms are decaying with time, fewer particles will be emitted from the nuclei in these decaying processes.

If we now focus on a ratio of one-half, we can find the expression for the half-life. The **symbol for half-life is usually \(\tau_{1/2}\)**_{.}

\[e^{-\lambda \tau_{1/2}} = \frac{1}{2} \rightarrow \tau_{1/2} = \frac{\ln(2)}{\lambda}\]

This expression confirms that the time it takes for a radioactive sample to lose half of its unstable nuclei **depends only on the isotope (decay constant)** and not on the number of unstable nuclei. Thus, it is constant.

Below is a table with some values for the half-lives of certain isotopes.

Element | Half-Life |

Radium-226 | 1600 years |

Uranium-236 | 23,420 million years |

Polonium-217 | 1.47 seconds |

Lead-214 | 26.8 minutes |

Here you can see that some isotopes have a very short half-life. This means they decay very fast and almost don’t exist in nature. However, like uranium-236, others have a very long half-life, making them dangerous (like the radioactive waste from nuclear power plants).

Half-life is a valuable indicator of the **age of a sample** or the **needed containment time** of a particular material. Let’s look at this in more detail.

Carbon plays an essential role in the functioning of organic beings. Although carbon-12 and carbon-13 are stable isotopes, the most abundant is carbon-12, which we typically find in every organic structure. We also find an unstable isotope (carbon-14) on Earth, which is formed in the atmosphere due to radiation from outer space.

If you refer to our explanation on **Radioactive Decay**, you can find more information and examples about carbon-14 dating. Just know that we can accurately **estimate the deaths of humans and animals using carbon-14 dating**.

The decay equation helps calculate how long radioactive materials need to be stored so that they no longer emit large amounts of radiation. There are three kinds of waste:

**Low-level waste**from hospitals and industry. These emit low levels of ionising radiation, which are still enough to pose some environmental threat. This waste may require some combination of shielding, incineration, or compacting for shallow burial. The half life of materials of this kind can reach approximately**five years**.**Intermediate-level waste**, such as sludge, fuels, and chemical waste. These materials require shielding; solidification in concrete, bitumen, or silica; and burial in relatively shallow nuclear storage sites (repositories). The half life of materials of this kind range from**five to 30 years**.**High-level waste**, like heavy atomic elements (uranium, for example) and materials involved in nuclear fission. These products must be cooled first and then subjected to deep geological burial in concrete and metal containers for a very long time. The half lives of these kinds of materials are typically**over 30 years**.

**Gamma emitters** are used as tracers because their radiation is not very dangerous and can be accurately detected by specific devices. Some tracers are used to **trace a substance’s distribution in a medium**, like fertilisers in the soil. Others are used for **exploring the human body**, which means that they don’t have a very long half-life (they don’t emit radiation for a long time inside the body and damage it).

**Decay calculations** can also determine whether a **radioisotopic tracer** is fit for use. Tracers can neither be highly radioactive nor not radioactive enough because, in the latter case, radiation would not reach the measuring devices, and we would not be able to detect or “trace” them. In addition, the half-life allows us to classify them by the rate of decay.

- Half-life is the time it takes a sample of a certain unstable isotope to half its number of unstable nuclei.
- The process of unstable nuclei transforming into stable nuclei is called nuclear decay (or radioactive decay).
- Decay is a random process, but it is very accurately described by exponential decay when considering samples with a large number of unstable nuclei.
- The half-life of objects is a relevant quantity with many fruitful applications ranging from dating techniques to the handling of radioactive waste.

More about Half Life

How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

94% of StudySmarter users achieve better grades.

Sign up for free!94% of StudySmarter users achieve better grades.

Sign up for free!How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

Free physics cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.