StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Thermionic electron emission - from the Greek 'thermos', meaning 'hot'; and 'ion', meaning 'something that goes' - was first observed in 1853 by French physicist Edmond Becquerel. It was rediscovered by British physicist Frederick Guthrie in 1873. Guthrie found that a negatively charged metal sphere would lose its charge if heated enough. Though the electron had not been discovered yet and neither of these…

Content verified by subject matter experts

Free StudySmarter App with over 20 million students

Explore our app and discover over 50 million learning materials for free.

Thermionic Electron Emission

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Generators
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Famous Physicists
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Equipotential Surface
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Expansion
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Eddy Current
- Faraday's Law
- Induced Currents
- Inductance
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nuclear Reaction
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Hooke's Law
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Spectral Colour
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenThermionic electron emission - from the Greek 'thermos', meaning 'hot'; and 'ion', meaning 'something* *that goes' - was first observed in 1853 by French physicist Edmond Becquerel. It was rediscovered by British physicist Frederick Guthrie in 1873. Guthrie found that a negatively charged metal sphere would lose its charge if heated enough. Though the electron had not been discovered yet and neither of these men understood the mechanisms behind the phenomenon, their discoveries would prove indispensable decades later.

As the name suggests, thermionic electron emission is the phenomenon whereby electrons are freed and emitted from a metal surface due to an increase in its temperature.** **

Electrons in an atom are in a state of constant motion, each possessing its own kinetic energy as they orbit the nucleus at the atom's centre. The Rutherford-Bohr** **model of the atom, as proposed by Niels Bohr and Ernest Rutherford in the early 20th century, states that the orbit of each of these electrons is dependent on their particular kinetic energies, with electrons of higher kinetic energy orbiting further from the centre of the atom.

The discrete levels at which these electrons orbit are known as energy levels, counting out from the atom's centre. An electron in an atom may go up an energy level** **if it gains kinetic energy, or go down an energy level** **if it loses kinetic energy. The Rutherford-Bohr** **model, although it does not tell the whole story of how atoms are structured, is useful in understanding the relationship between electron behaviour and energy interactions within the atom. In fact, it is with knowledge of these energy levels that Becquerel's unknowing discovery of thermionic electron emission** ** can be explained.

How then, does this Rutherford-Bohr model help to explain thermionic electron emission? Simply put, electron emission happens when an electron's kinetic energy becomes great enough to escape the attractive force of the positively charged nucleus. This can occur in different ways, but in the case of thermionic electron emission, electrons in the atom gain kinetic energy when the atom's temperature is increased. As the atom's temperature increases its electrons gain energy, moving up the energy levels away from the nucleus until a critical point of kinetic energy is reached.

This critical point is known as the metal's 'work function',** **and is an intrinsic property of a given material. It is defined as the 'minimum amount of energy required to remove an electron from the surface of a material'*.** *Once this work function is reached, electrons progress past the final energy level and electron emission occurs. These electrons are then referred to as free electrons, or thermions.

It is important to note that 'thermion' can also refer to any charge carrier emitted due to heating, such as ions.

This phenomenon, though discovered earlier by both Becquerel and Guthrie, was for some time referred to as the Edison effect. Edison, whilst conducting experiments to improve his new incandescent lamp, discovered that current would flow through a vacuum from a heated filament to a cooler metal surface. Years later, this discovery would pave the way for the invention of the cathode ray tube, and in turn the electron gun.

The electron gun is an electrical component that produces a concentrated beam of electrons. It is based on the principles of thermionic electron emission and is primarily used in the design of cathode ray tubes.

The basic electron gun is comprised of three main parts: a metal filament cathode that emits free electrons when the temperature is increased, a selection of electrodes that focus the resulting stream of electrons (often called a 'Wehnelt cylinder'), and a highly positive anode to accelerate the free electrons to greater speeds.

A positive 'heating voltage' is applied across the hot cathode, while a much larger positive 'acceleration voltage' is applied to the anode. As the anode has a far greater positive voltage than the hot cathode, the negative free electrons will accelerate towards it at greater and greater speeds. It is the difference in voltage (or potential difference) between the cathode and anode that determines the acceleration of the free electrons in the beam.

Interestingly, these devices resided for a long time in nearly every home. The electron gun was absolutely pivotal in the invention of the television. Before the invention of the flat-screen TV, the picture on television screens was created using beams from three electron guns. This is why 'old-fashioned' televisions were much deeper units; they needed enough space to accelerate the free electrons to the screen!

So, how fast exactly do electrons emitted from a metal surface travel? Well, that's easy! The kinetic energy equation can be used to work out the emitted electron's velocity, provided we know the kinetic energy of the electron when it is emitted.

\[E_k = \frac{1}{2} mv^2\]

where: E_{k} = the kinetic energy of the electron, (J)m = the mass of the electron (kg)v = the velocity of the electron (ms^{-1})

A metal filament is heated until its temperature is high enough for thermionic electron emission to occur. The kinetic energy of an electron when emitted is 4.9⋅10^{-19} J. Calculate the minimum speed of a free-electron emitted from the metal filament, given that the mass of an electron is 9.1⋅10^{-31} kg.

We know that the kinetic energy formula is:

\[E_k = \frac{1}{2} mv^2\]

If we put the given variables into the equation above:

\(4.9 \cdot 10^{-19} J = \frac{1}{2} \cdot 9.1 \cdot 10 ^{-31} kg \cdot v^2\)

Then we can solve for v,

\(v = \sqrt{\frac{4.9 \cdot 10^{-19} \cdot 2}{9.1 \cdot 10^{-31}}} \frac{m}{s}\); \(v = 1037749.043 \frac{m}{s}\)Electrons are incredibly tiny particles with tiny masses. Though they move incredibly fast, they have extremely small kinetic energies. For this reason, a whole new unit of energy was created just for them: the electron-volt (eV). To understand what an electron-volt is, it is important to understand what happens to a free electron travelling through a potential difference between two points.

We've already seen how a potential difference was used to accelerate free electrons in the electron gun; the negative electrons just accelerate toward the more positive electrode (cathode). How much these free electrons accelerate, and in turn how much kinetic energy they gain, is dependent on the potential difference they travel through. The greater the potential difference, the more kinetic energy the electron will have gained.

\[E_k = eV\]

where: E_{k} = kinetic energy (J)e = the charge of an electron (C)V= the potential difference (voltage) the electron is accelerated through (V)

Here, *e *is the charge of an electron, and *V *is the potential difference that the electron has been accelerated through. An electron-volt therefore, is the energy gained by a free electron accelerated through a 1-volt potential difference, or:

When combined with the equation for kinetic energy, it is possible to find the velocity gained by this free electron from the potential difference.

\[eV = \frac{1}{2} mv^2\]

A free electron is accelerated through a potential difference of 10V. Calculate the total velocity gained by the electron due to the potential difference, given that the charge of an electron is 1.602⋅10^{-19} C, and the mass of an electron is 9.1⋅10^{-31} kg.

We know the formula relating electron-volts to kinetic energy is:

\[eV = \frac{1}{2} mv^2\]

So substituting the given variables:

\[1.602 \cdot 10^{-19} J \cdot 10 = \frac{1}{2} \cdot 9.1 \cdot 10^{-31} kg \cdot v^2\]We can solve for v:

\[v = \sqrt{\frac{1.602\cdot 10^{-19} \cdot 10 \cdot 2}{9.1 \cdot 10^{-31}}} \frac{m}{s}\]\[v = 1876400.576 \frac{m}{s}\]- Thermionic electron emission occurs when a metal's temperature increases such that its electrons gain enough kinetic energy to escape their atom.
- Electrons in atoms are confined to discrete energy levels and can move between energy levels if they gain or lose kinetic energy.
- Electron guns create beams of electrons through thermionic electron emission.
- The speed of an emitted electron can be calculated from its kinetic energy.
- The increase in velocity of an electron can be calculated using the electron volt and kinetic energy equation.

When an atom absorbs heat energy, the electrons from its outer energy level are emitted.

More about Thermionic Electron Emission

60%

of the users don't pass the Thermionic Electron Emission quiz! Will you pass the quiz?

Start QuizHow would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

94% of StudySmarter users achieve better grades.

Sign up for free!94% of StudySmarter users achieve better grades.

Sign up for free!How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

Free physics cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.