StudySmarter - The all-in-one study app.

4.8 • +11k Ratings

More than 3 Million Downloads

Free

StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

A diffraction grating is an optical plate that divides or disperses white light. As you know, white light is composed primarily of seven different colours, each with a different wavelength. The simplest type of grating is a structure with evenly-spaced identical slits.Refraction gratings are based on the principle of refraction of light, which states that when a light beam passes…

Content verified by subject matter experts

Free StudySmarter App with over 20 million students

Explore our app and discover over 50 million learning materials for free.

Diffraction Gratings

- Astrophysics
- Absolute Magnitude
- Astronomical Objects
- Astronomical Telescopes
- Black Body Radiation
- Classification by Luminosity
- Classification of Stars
- Cosmology
- Doppler Effect
- Exoplanet Detection
- Hertzsprung-Russell Diagrams
- Hubble's Law
- Large Diameter Telescopes
- Quasars
- Radio Telescopes
- Reflecting Telescopes
- Stellar Spectral Classes
- Telescopes
- Atoms and Radioactivity
- Fission and Fusion
- Medical Tracers
- Nuclear Reactors
- Radiotherapy
- Random Nature of Radioactive Decay
- Thickness Monitoring
- Circular Motion and Gravitation
- Applications of Circular Motion
- Centripetal and Centrifugal Force
- Circular Motion and Free-Body Diagrams
- Fundamental Forces
- Gravitational and Electric Forces
- Gravity on Different Planets
- Inertial and Gravitational Mass
- Vector Fields
- Conservation of Energy and Momentum
- Dynamics
- Application of Newton's Second Law
- Buoyancy
- Drag Force
- Dynamic Systems
- Free Body Diagrams
- Normal Force
- Springs Physics
- Superposition of Forces
- Tension
- Electric Charge Field and Potential
- Charge Distribution
- Charged Particle in Uniform Electric Field
- Conservation of Charge
- Electric Field Between Two Parallel Plates
- Electric Field Lines
- Electric Field of Multiple Point Charges
- Electric Force
- Electric Potential Due to Dipole
- Electric Potential due to a Point Charge
- Electrical Systems
- Equipotential Lines
- Electricity
- Ammeter
- Attraction and Repulsion
- Basics of Electricity
- Batteries
- Capacitors in Series and Parallel
- Circuit Schematic
- Circuit Symbols
- Circuits
- Current Density
- Current-Voltage Characteristics
- DC Circuit
- Electric Current
- Electric Generators
- Electric Motor
- Electrical Power
- Electricity Generation
- Emf and Internal Resistance
- Kirchhoff's Junction Rule
- Kirchhoff's Loop Rule
- National Grid Physics
- Ohm's Law
- Potential Difference
- Power Rating
- RC Circuit
- Resistance
- Resistance and Resistivity
- Resistivity
- Resistors in Series and Parallel
- Series and Parallel Circuits
- Simple Circuit
- Static Electricity
- Superconductivity
- Time Constant of RC Circuit
- Transformer
- Voltage Divider
- Voltmeter
- Electricity and Magnetism
- Benjamin Franklin's Kite Experiment
- Changing Magnetic Field
- Circuit Analysis
- Diamagnetic Levitation
- Electric Dipole
- Electric Field Energy
- Magnets
- Oersted's Experiment
- Voltage
- Electromagnetism
- Electrostatics
- Energy Physics
- Big Energy Issues
- Conservative and Non Conservative Forces
- Efficiency in Physics
- Elastic Potential Energy
- Electrical Energy
- Energy and the Environment
- Forms of Energy
- Geothermal Energy
- Gravitational Potential Energy
- Heat Engines
- Heat Transfer Efficiency
- Kinetic Energy
- Mechanical Power
- Potential Energy
- Potential Energy and Energy Conservation
- Pulling Force
- Renewable Energy Sources
- Wind Energy
- Work Energy Principle
- Engineering Physics
- Angular Momentum
- Angular Work and Power
- Engine Cycles
- First Law of Thermodynamics
- Moment of Inertia
- Non-Flow Processes
- PV Diagrams
- Reversed Heat Engines
- Rotational Kinetic Energy
- Second Law and Engines
- Thermodynamics and Engines
- Torque and Angular Acceleration
- Famous Physicists
- Fields in Physics
- Alternating Currents
- Capacitance
- Capacitor Charge
- Capacitor Discharge
- Coulomb's Law
- Electric Field Strength
- Electric Fields
- Electric Potential
- Electromagnetic Induction
- Energy Stored by a Capacitor
- Equipotential Surface
- Escape Velocity
- Gravitational Field Strength
- Gravitational Fields
- Gravitational Potential
- Magnetic Fields
- Magnetic Flux Density
- Magnetic Flux and Magnetic Flux Linkage
- Moving Charges in a Magnetic Field
- Newton’s Laws
- Operation of a Transformer
- Parallel Plate Capacitor
- Planetary Orbits
- Synchronous Orbits
- Fluids
- Absolute Pressure and Gauge Pressure
- Application of Bernoulli's Equation
- Archimedes' Principle
- Conservation of Energy in Fluids
- Fluid Flow
- Fluid Systems
- Force and Pressure
- Force
- Conservation of Momentum
- Contact Forces
- Elastic Forces
- Force and Motion
- Gravity
- Impact Forces
- Moment Physics
- Moments Levers and Gears
- Moments and Equilibrium
- Pressure
- Resultant Force
- Safety First
- Time Speed and Distance
- Velocity and Acceleration
- Work Done
- Fundamentals of Physics
- Further Mechanics and Thermal Physics
- Bottle Rocket
- Charles law
- Circular Motion
- Diesel Cycle
- Gas Laws
- Heat Transfer
- Heat Transfer Experiments
- Ideal Gas Model
- Ideal Gases
- Kinetic Theory of Gases
- Models of Gas Behaviour
- Newton's Law of Cooling
- Periodic Motion
- Rankine Cycle
- Resonance
- Simple Harmonic Motion
- Simple Harmonic Motion Energy
- Temperature
- Thermal Equilibrium
- Thermal Expansion
- Thermal Physics
- Volume
- Work in Thermodynamics
- Geometrical and Physical Optics
- Kinematics Physics
- Air Resistance
- Angular Kinematic Equations
- Average Velocity and Acceleration
- Displacement, Time and Average Velocity
- Frame of Reference
- Free Falling Object
- Kinematic Equations
- Motion in One Dimension
- Motion in Two Dimensions
- Rotational Motion
- Uniformly Accelerated Motion
- Linear Momentum
- Magnetism
- Ampere force
- Earth's Magnetic Field
- Fleming's Left Hand Rule
- Induced Potential
- Magnetic Forces and Fields
- Motor Effect
- Particles in Magnetic Fields
- Permanent and Induced Magnetism
- Magnetism and Electromagnetic Induction
- Eddy Current
- Faraday's Law
- Induced Currents
- Inductance
- LC Circuit
- Lenz's Law
- Magnetic Field of a Current-Carrying Wire
- Magnetic Flux
- Magnetic Materials
- Monopole vs Dipole
- RL Circuit
- Measurements
- Mechanics and Materials
- Acceleration Due to Gravity
- Bouncing Ball Example
- Bulk Properties of Solids
- Centre of Mass
- Collisions and Momentum Conservation
- Conservation of Energy
- Density
- Elastic Collisions
- Force Energy
- Friction
- Graphs of Motion
- Linear Motion
- Materials
- Materials Energy
- Moments
- Momentum
- Power and Efficiency
- Projectile Motion
- Scalar and Vector
- Terminal Velocity
- Vector Problems
- Work and Energy
- Young's Modulus
- Medical Physics
- Absorption of X-Rays
- CT Scanners
- Defects of Vision
- Defects of Vision and Their Correction
- Diagnostic X-Rays
- Effective Half Life
- Electrocardiography
- Fibre Optics and Endoscopy
- Gamma Camera
- Hearing Defects
- High Energy X-Rays
- Lenses
- Magnetic Resonance Imaging
- Noise Sensitivity
- Non Ionising Imaging
- Physics of Vision
- Physics of the Ear
- Physics of the Eye
- Radioactive Implants
- Radionuclide Imaging Techniques
- Radionuclide Imaging and Therapy
- Structure of the Ear
- Ultrasound Imaging
- X-Ray Image Processing
- X-Ray Imaging
- Modern Physics
- Bohr Model of the Atom
- Disintegration Energy
- Franck Hertz Experiment
- Mass Energy Equivalence
- Nuclear Reaction
- Nucleus Structure
- Quantization of Energy
- Spectral Lines
- The Discovery of the Atom
- Wave Function
- Nuclear Physics
- Alpha Beta and Gamma Radiation
- Binding Energy
- Half Life
- Induced Fission
- Mass and Energy
- Nuclear Instability
- Nuclear Radius
- Radioactive Decay
- Radioactivity
- Rutherford Scattering
- Safety of Nuclear Reactors
- Oscillations
- Energy Time Graph
- Energy in Simple Harmonic Motion
- Hooke's Law
- Kinetic Energy in Simple Harmonic Motion
- Mechanical Energy in Simple Harmonic Motion
- Pendulum
- Period of Pendulum
- Period, Frequency and Amplitude
- Phase Angle
- Physical Pendulum
- Restoring Force
- Simple Pendulum
- Spring-Block Oscillator
- Torsional Pendulum
- Velocity
- Particle Model of Matter
- Physical Quantities and Units
- Converting Units
- Physical Quantities
- SI Prefixes
- Standard Form Physics
- Units Physics
- Use of SI Units
- Physics of Motion
- Acceleration
- Angular Acceleration
- Angular Displacement
- Angular Velocity
- Centrifugal Force
- Centripetal Force
- Displacement
- Equilibrium
- Forces of Nature Physics
- Galileo's Leaning Tower of Pisa Experiment
- Inclined Plane
- Inertia
- Mass in Physics
- Speed Physics
- Static Equilibrium
- Radiation
- Antiparticles
- Antiquark
- Atomic Model
- Classification of Particles
- Collisions of Electrons with Atoms
- Conservation Laws
- Electromagnetic Radiation and Quantum Phenomena
- Isotopes
- Neutron Number
- Particles
- Photons
- Protons
- Quark Physics
- Specific Charge
- The Photoelectric Effect
- Wave-Particle Duality
- Rotational Dynamics
- Angular Impulse
- Angular Kinematics
- Angular Motion and Linear Motion
- Connecting Linear and Rotational Motion
- Orbital Trajectory
- Rotational Equilibrium
- Rotational Inertia
- Satellite Orbits
- Third Law of Kepler
- Scientific Method Physics
- Data Collection
- Data Representation
- Drawing Conclusions
- Equations in Physics
- Uncertainties and Evaluations
- Space Physics
- Thermodynamics
- Heat Radiation
- Thermal Conductivity
- Thermal Efficiency
- Thermodynamic Diagram
- Thermodynamic Force
- Thermodynamic and Kinetic Control
- Torque and Rotational Motion
- Centripetal Acceleration and Centripetal Force
- Conservation of Angular Momentum
- Force and Torque
- Muscle Torque
- Newton's Second Law in Angular Form
- Simple Machines
- Unbalanced Torque
- Translational Dynamics
- Centripetal Force and Velocity
- Critical Speed
- Free Fall and Terminal Velocity
- Gravitational Acceleration
- Kinetic Friction
- Object in Equilibrium
- Orbital Period
- Resistive Force
- Spring Force
- Static Friction
- Turning Points in Physics
- Cathode Rays
- Discovery of the Electron
- Einstein's Theory of Special Relativity
- Electromagnetic Waves
- Electron Microscopes
- Electron Specific Charge
- Length Contraction
- Michelson-Morley Experiment
- Millikan's Experiment
- Newton's and Huygens' Theories of Light
- Photoelectricity
- Relativistic Mass and Energy
- Special Relativity
- Thermionic Electron Emission
- Time Dilation
- Wave Particle Duality of Light
- Waves Physics
- Acoustics
- Applications of Ultrasound
- Applications of Waves
- Diffraction
- Diffraction Gratings
- Doppler Effect in Light
- Earthquake Shock Waves
- Echolocation
- Image Formation by Lenses
- Interference
- Light
- Longitudinal Wave
- Longitudinal and Transverse Waves
- Mirror
- Oscilloscope
- Phase Difference
- Polarisation
- Progressive Waves
- Properties of Waves
- Ray Diagrams
- Ray Tracing Mirrors
- Reflection
- Refraction
- Refraction at a Plane Surface
- Resonance in Sound Waves
- Seismic Waves
- Snell's law
- Spectral Colour
- Standing Waves
- Stationary Waves
- Total Internal Reflection in Optical Fibre
- Transverse Wave
- Ultrasound
- Wave Characteristics
- Wave Speed
- Waves in Communication
- X-rays
- Work Energy and Power
- Conservative Forces and Potential Energy
- Dissipative Force
- Energy Dissipation
- Energy in Pendulum
- Force and Potential Energy
- Force vs. Position Graph
- Orbiting Objects
- Potential Energy Graphs and Motion
- Spring Potential Energy
- Total Mechanical Energy
- Translational Kinetic Energy
- Work Energy Theorem
- Work and Kinetic Energy

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmeldenNie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmeldenA diffraction grating is an optical plate that divides or disperses white light. As you know, white light is composed primarily of seven different colours, each with a different wavelength. The simplest type of grating is a structure with evenly-spaced identical slits.

Refraction gratings are based on the principle of refraction of light, which states that when a light beam passes through an opening, it spreads out around the opening in a wave pattern.

When light passes through several openings, the light will refract around the openings. The waves that are created behind the openings will interfere with one another, merging together where two peaks meet to create a new peak of higher amplitude; this is also known as constructive interference. They interfere destructively when a trough and a peak meet. This creates an interference pattern, which is shown below.

This is the principle of a diffraction grating. When a parallel beam of light is directed at a diffraction grating with several identical openings, this will result in an interference pattern of bold and faint points of light.

When white light is incident on a parallel grating plate with several or even hundreds of evenly-spaced identical slits, it is diffracted creating spherical waves around the openings that interfere with one another. This creates an interference pattern, where each wave interacts with another. This further creates a pattern of maximums and minimums, as seen below.

Diffraction grating pattern.

The light that is shown on the back screen is a series of dots called maximums. The empty space in between the maximums is called the minimum. The maximum that is parallel to the light beam is the zero-order maximum, while the dots on the sides are the first and the second order maximums going outwards from the middle. The visible points are those points at which many different rays of light interfered.

The angles at which the maximum intensity points occur are known as fringes, and can be calculated using the grading equation below.

\[d \cdot \sin\theta = n \cdot \lambda\]

where d is the spacing between the slits in metres, θ is the separation angle between the order of maximum in degrees, n is the order of maximum, and λ is the wavelength of the source in metres.

Therefore, \(\sinθ\) is proportional to the wavelength, which means the longer the wavelength of light (red light has the longest wavelength), the greater the angle. It can also be derived from the above equation that the larger the number of slits per metre (hence, the smaller the d component), the bigger the angle of diffraction.

When a light beam impacts the diffraction grating plate, the white light is separated into the seven different light colours of which it is comprised, each one with its own different wavelength. It can be derived from the equation that the longer the wavelength, the greater the separation angle, and the shorter the wavelength, the smaller the angle. Hence, in the middle, where the angle is zero, the maximum spot will be white. In the first-order maximum points, the blue light will be closest to the white spot while red light will be the light that has the greatest angle. Hence, the light furthest away from the zero-order is the white light spot. This pattern will be then repeated for each order point as seen below.

Diffraction grating diagram.

The angular separation θ1 (as seen below) of each maximum is calculated by solving the grating equation for θ. Using the equation below and substituting the order of maximum n, we can find the angle between that order of maximum and the zero-order. For example, if we want to estimate angle θ2, we need to replace n with 2 to find the angle between the zero-order and the second-order maximum.

\[\sin \theta = \frac{n \cdot \lambda}{d} \theta = \sin^{-1}(\frac{n \cdot \lambda}{d})\]

The maximum angle required for orders of maxima to be created is when the beam is at a right angle to the diffraction grating. Hence θ = 90^{o} and sin(θ) = 1.

Separation angle diagram.

Αn experiment was conducted using a diffraction grating with an opening of 1.9 μm. The wavelength of the light beam is 570 nm. Find the angle x between the two second-order lines.

**Solution**

Use the equation solved for θ and substitute the given values. Use n = 2 as second-order maximum angle required.

\(\sin \theta = \frac{n \cdot \lambda}{d} \theta = \sin^{-1}(\frac{2 \cdot 570 \cdot 10^{-9}}{1.9 \cdot 10^{-6}})\theta = \sin^{-1}(0.6) = 36.8 ^{\circ}\)

However, the diffraction grating equation gives the separation angle, which is the angle between the central zero maximum. But the question requires the angle between the two angles as seen in the diagram below. Hence angle θ is doubled to find angle x.

\(x = \theta \cdot 2 = 73.6^{\circ}\)

Finding the angle between two second-order lines

A light with a wavelength of 480 μm passes through a diffraction grating. The separation angle is 40.85° and the diffraction creates the first-order maximum. Find the opening of the slits.

**Solution**

Use the diffraction grating equation but rearrange for d. Substitute the given values.

\(d \cdot \sin \theta = n \cdot \lambda d \cdot \sin \theta = 1 \cdot 480 \cdot 10^{-9}d = \frac{1 \cdot 480 \cdot 10^{-9}}{\sin(40.85)} = 7.33 \cdot 10^{-7} m \text{ or } 0.73 \space \mu m\)

The aim of the experiment is to calculate the wavelength of light.

- Diffraction grating
- Laser beam
- Ruler
- Binder clips
- Tape
- Colour filter

For conducting the experiment, position a white light source opposite a diffraction grating. A wall behind the grating will be used as a projection screen. Secure the light source with tape and the diffraction grating with binder-type clips. Position a piece of coloured plastic or colour filter between the source and the diffraction grating as needed.

Direct the white light beams through the diffraction grating and observe the pattern projected on the wall. Adjust the angle between the beam of light and the glass as needed to achieve the diffraction grating pattern required.

Identify the zero-order beam and the diffracted beams by the intensity in the spots illustrated on the wall.

Using a ruler, measure distance between the glasses and the white spot on the screen.

Repeat the experiment with several laser pointers.

For each different light beam, measure the distance between the straight unbent beam and the diffracted beams, also known as h.

Calculate the wavelength and compare it to the manufacturer's wavelength, which is the wavelength of the laser used.

Insert a piece of coloured cellophane plastic or filter, between the white light beam and the diffraction grating. Record any observations.

- The wavelength is calculated by rearranging the equation so that λ is the subject. Using trigonometry angle θ can be found.
- The distance D is shown below, which can be used to find the separation angle.
- The wavelength can be determined using the equation below, where a triangle is shaped between the distance from the grating to the wall and the fringe spacing shown in figure 7 as h.

\[\tan \theta = \frac{h}{D} \lambda = \frac{d \cdot \sin \theta}{ n}\]

Experimental pattern diagram.

- The filter or coloured plastic filters out colours from the spectrum and only allows one wavelength of light to pass through, hence only colour appears.

Multiple measurements of

*h*should be taken to find the average.Use a Vernier scale to record

*h*to minimise uncertainty.Conduct the experiment in a darkened room, so the fringes and measurements are clearer.

Use a grating with lots of slits so that magnitudes of

*h*are greater to minimise uncertainty.

Diffraction gratings are used in multiple optical devices such as:

Spectrometers.

Lasers.

CD and DVDs.

Monochromators.

Optical pulse compression devices.

- A diffraction grating is an optical plate that divides or disperses white light, which is composed of seven different colours, each with its own different wavelength.
- A diffraction grating pattern is an interference pattern consisting of maximums and minimums when light is diffracted.
- The angular separation is the angle between the unbent and bent light beams.

More about Diffraction Gratings

How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

94% of StudySmarter users achieve better grades.

Sign up for free!94% of StudySmarter users achieve better grades.

Sign up for free!How would you like to learn this content?

Creating flashcards

Studying with content from your peer

Taking a short quiz

Free physics cheat sheet!

Everything you need to know on . A perfect summary so you can easily remember everything.

Be perfectly prepared on time with an individual plan.

Test your knowledge with gamified quizzes.

Create and find flashcards in record time.

Create beautiful notes faster than ever before.

Have all your study materials in one place.

Upload unlimited documents and save them online.

Identify your study strength and weaknesses.

Set individual study goals and earn points reaching them.

Stop procrastinating with our study reminders.

Earn points, unlock badges and level up while studying.

Create flashcards in notes completely automatically.

Create the most beautiful study materials using our templates.

Sign up to highlight and take notes. It’s 100% free.