Select your language

Suggested languages for you:
Log In Start studying!
StudySmarter - The all-in-one study app.
4.8 • +11k Ratings
More than 3 Million Downloads
Free
|
|

All-in-one learning app

  • Flashcards
  • NotesNotes
  • ExplanationsExplanations
  • Study Planner
  • Textbook solutions
Start studying

Quantitative Data

Save Save
Print Print
Edit Edit
Sign up to use all features for free. Sign up now
Quantitative Data

Quantitative data is one of the most common methods used for the analysis of data in psychology research. The main reason quantitative data is used by researchers is that it allows researchers to use statistics to identify whether a hypothesis should be accepted or rejected. It is the most scientific approach to research, offering fast and reliable results when performed correctly.

Quantitative data excel in areas where knowledge is being developed, whereas qualitative tends to excel in unknown territories.

  • First, we are going to provide a quantitative data definition.
  • Then, we will discuss the quantitative data types, provide quantitative data examples, and show how to interpret and display quantitative data.
  • Finally, we will evaluate the interpretation and display of qualitative data, highlighting the advantages and disadvantages of quantitative data

Interpretation and display of quantitative data, three people working on research and numbers with a head and brain, StudySmarterQuantitative data is fast, scientific, and easier to analyse, freepik.com/pch.vector

The Quantitative Data Definition

Quantitative data is essentially numerical data that is used in research to summarise, describe, evaluate and analyse datasets.

There are many reasons psychologists use quantitative data in research. Some of these reasons are:

  • Researchers can easily identify patterns and trends in data
  • Researchers can use inferential statistics (this is a quantitative data example) to identify if results are significant (not due to chance) and identify if the data supports/ rejects the hypothesis proposed
  • Researchers can easily compare results from other researchers
  • Researchers can use quantitative data to describe the data that was collected.

Interpretation and display of quantitative data

In psychology, research data needs to be interpreted for it to be of use. When this is reported researchers usually use tables, graphs and charts to illustrate what the data is showing.

Some quantitative data examples of charts and graphs used to illustrate data are:

  • frequency tables
  • bar charts
  • histograms
  • scatter plots

The chart or graph that a researcher uses is determined by what the researcher wishes to describe and illustrate regarding the data. This will be explained in further detail with illustrative examples!

Quantitative data examples - frequency table

Frequency tables are used by researchers to show the frequency of a group. This table is usually used in psychology research to describe the characteristics of a data set.

The frequency table below shows the number of people who completed a test in each age group.

Age Frequency Interpretation
204040 people who completed the test were aged 20
212727 people who completed the test were aged 21
223333 people who completed the test were aged 22
233535 people who completed the test were aged 23
245252 people who completed the test were aged 24
254949 people who completed the test were aged 25
263030 people who completed the test were aged 26
272626 people who completed the test were aged 27
283030 people who completed the test were aged 28
295050 people who completed the test were aged 29
305656 people who completed the test were aged 30

Quantitative data types - bar charts and histograms

Bar charts and histograms are both forms of a graph that is used to illustrate frequency tables. This can make it easier for readers to visualise and understand the characteristics of the data.

The data from the quantitative data table example has been used to plot onto a bar chart. This is shown in the graph below.

Interpretation and display of quantitative data, a bar chart, StudySmarterA bar chart can reveal information about data immediately, Sharon Thind, StudySmarter Originals

The bar chart illustrates that the most people who completed the test were aged 30 and the least were aged 27. When displaying quantitative data in a bar chart and any other graph, it is important that the researcher in their report:

  • Titles the chart/graph
  • Labels the axis
  • Interprets what the chart/graph shows

The same data has been used to create a histogram. This is shown in the graph below. Histograms display continuous data.

Interpretation and display of quantitative data, a histogram graph, StudySmarterHistograms are used for continuous data, Sharon Thind, StudySmarter Originals

This shows that 26-31 has the highest frequency density and both 38-43 and 44-49 have the lowest.

Bar charts and histograms essentially have the same purpose of illustrating data from frequency tables. However, the type that the researcher may use is determined by the number of frequencies that the data is measuring.

Data that is measuring the frequency of many variables are likely to use histograms to illustrate this. This is because it groups the data. A bar chart would be inappropriate as there would be too many bars and it may make it difficult to interpret the graph.

Quantitative data forms - scatter plot

Scatter plots are illustrative quantitive data examples. A common inferential statistic used in psychology is correlations. Researchers use scatter plots to illustrate the findings from a correlational test. How a scatter plot looks can be used to:

  • Identify the relationship between two variables (positive, negative or, none)
  • Identify the strength of the relationship (strong, weak or, moderate)

In a hypothetical psychology report, the psychologist added a scatterplot to illustrate whether there is an association between the age of participants and the number of people who completed the test. This is shown in the example below (the frequency table data was used to plot this).

Interpretation and display of quantitative data, a scatterplot chart, StudySmarterScatterplots are great for seeing correlations, Sharon Thind, StudySmarter Originals

From the scatter plot, the quantitative data can be interpreted as there is no relationship/association between the frequency of reporting and the age of participants.

Evaluation of quantitative data

Let's now discuss the advantages and disadvantages of quantitative data!

The advantages of quantitative data

The advantages of quantitative data are:

  • Quantitative data can make it easier to accept or reject a hypothesis than qualitative data
  • Visualising data may make it easier for the reader to understand the data
  • It is considered an objective and scientific way to assess hypotheses, the majority of the psychology community believes that research should be scientific
  • It is easier to analyse the data of a large sample
  • Researchers can identify if the results are significant, this can assess the validity of the results.

The disadvantages of quantitative data

The disadvantages of quantitative data are:

  • It does not provide detailed information about the data, unlike qualitative data
  • It is difficult to establish cause and effect from quantitative data. Quantitative data has more of a descriptive nature so, it is difficult to use to explain a phenomenon
  • You can miss important information in data as it is usually used to describe and analyse the average of data
  • For the researcher to find significant data, the larger the sample, the better.

Quantitative Data - Key takeaways

  • The quantitative data definition is essentially numerical data that is used in research to summarise, describe, evaluate and analyse datasets.
  • Some quantitative data examples are frequency tables, bar charts, histograms, and scatterplots.
  • Some of the advantages of quantitative data are visualising data may make it easier for the reader to understand the data, and quantitative data allows researchers to identify patterns/ trends and analysis of data. From this, the researcher can accept/ reject the hypothesis. Quantitative data is considered an objective and scientific way to assess hypotheses
  • Some of the disadvantages of quantitative data are it does not provide detailed information about the data unlike qualitative data, you can miss important information in data as it is usually used to describe and analyse the average of data, and for the data to find significant data, a large sample ideally needs to be used.

Frequently Asked Questions about Quantitative Data

Qualitative data is considered by many as holistic whereas, quantitative is not often considered holistic. This is because qualitative data provides detailed information which allows researchers to get an in-depth understanding of phenomenons. 

When carrying out research on quantitative data, the data needs to be carried out on a large enough sample to make a conclusion. In addition to this, statistical tests need to be carried out on the data to make a conclusion. 

If a list consists of numerical data then it is quantitative however, if it is non-numerical data then it would be classed as qualitative data. 

Data collection can be quantitative or qualitative. Quantitative data examples of data collection are questionnaires consisting of close-ended questions, experiments, and fixed-response surveys. However, questionnaires consisting of open-ended questions are qualitative. 

Qualitative data is detailed, non-numerical data. Whereas quantitative data is the opposite, numerical data that usually provide a description/ analysis of the summary of results. 

Final Quantitative Data Quiz

Question

What is the quantitative data definition? 

Show answer

Answer

The quantitative data definition is essentially numerical data that is used in research to summarise, describe, evaluate and analyse datasets. 

Show question

Question

What are some of the uses of quantitative data in psychology research? 

Show answer

Answer

Some of the uses of quantitative data in psychology research are:

  • researchers can easily identify patterns and trends in data 
  • researchers can use inferential statistics to identify if results are significant (not due to chance) and identify if the data supports/ rejects the hypothesis proposed

  • can easily compare results from other research 

  • can use quantitative data to describe the data that was collected.

Show question

Question

Which of the following is not an example of data that does not collect quantitative data? 

Show answer

Answer

Open-ended questions 

Show question

Question

Which of the following describes quantitative data? 

Show answer

Answer

Numerical data 

Show question

Question

What is the purpose of using frequency tables in research? 

Show answer

Answer

To describe the characteristics of data 

Show question

Question

What is used to illustrate frequency tables? 

Show answer

Answer

Bar charts 

Show question

Question

What is used to illustrate correlational data? 


Show answer

Answer

Scatterplots

Show question

Question

Which of the following graphs would be used when a researcher wants to illustrate the frequency table output that collected data from a large sample? 

Show answer

Answer

Histogram 

Show question

Question

When including charts/ graphs in psychology reports, how does the researcher need to format this?  

Show answer

Answer

When including charts/ graphs in psychology reports, the researcher needs to:

  • title the chart/ graph 
  • label the axis
  • interpret the chart/ graph

Show question

Question

What can be information can be identified from a scatterplot? 

Show answer

Answer

How a scatter plot looks can be used to:

  • identify the relationship between two variables (positive, negative or, none) 
  • identify the strength of the relationship (strong, weak or, moderate)


Show question

Question

What are the advantages of quantitative data? 

Show answer

Answer

Some of the advantages of quantitative data are:

  • Visualising data may make it easier for the reader to understand the data 
  • Quantitative data allows researchers to identify patterns/ trends and analysis of data 
    • from this, the researcher can accept/ reject the hypothesis 
  • It is considered an objective and scientific way to assess hypotheses

Show question

Question

What are the disadvantages of quantitative data?


Show answer

Answer

Some of the disadvantages of quantitative data are: 

  • It does not provide detailed information about the data unlike qualitative data 
  • You can miss important information in data as it is usually used to describe and analyse the average of data 
  • For the data to find significant data, a large sample needs to be used.

Show question

60%

of the users don't pass the Quantitative Data quiz! Will you pass the quiz?

Start Quiz

Discover the right content for your subjects

No need to cheat if you have everything you need to succeed! Packed into one app!

Study Plan

Be perfectly prepared on time with an individual plan.

Quizzes

Test your knowledge with gamified quizzes.

Flashcards

Create and find flashcards in record time.

Notes

Create beautiful notes faster than ever before.

Study Sets

Have all your study materials in one place.

Documents

Upload unlimited documents and save them online.

Study Analytics

Identify your study strength and weaknesses.

Weekly Goals

Set individual study goals and earn points reaching them.

Smart Reminders

Stop procrastinating with our study reminders.

Rewards

Earn points, unlock badges and level up while studying.

Magic Marker

Create flashcards in notes completely automatically.

Smart Formatting

Create the most beautiful study materials using our templates.

Just Signed up?

Yes
No, I'll do it now

Sign up to highlight and take notes. It’s 100% free.