StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q. 36

Expert-verifiedFound in: Page 499

Book edition
1st

Author(s)
Peter Kohn, Laura Taalman

Pages
1155 pages

ISBN
9781429241861

Find the exact value of the arc length of each function f(x) on [a, b] by writing the arc length as a definite integral and then solving that integral.

$f\left(x\right)=2{(1-x)}^{3/2}+3$, $\left[a,b\right]=\left[-2,0\right]$

The arc length is $\begin{array}{rcl}& & \frac{2}{27}{\left(28\right)}^{3/2}-\frac{2}{27}{\left(10\right)}^{3/2}\end{array}$.

Consider the given function $f\left(x\right)=2{(1-x)}^{3/2}+3$, $\left[a,b\right]=\left[-2,0\right]$.

The formula for a function to find the arc length from $x=a$ to $x=b$ is given by ${\int}_{a}^{b}\sqrt{1+({f}^{\text{'}}{\left(x\right))}^{2}}dx$.

$\begin{array}{rcl}\mathrm{Arc}\mathrm{length}& =& {\int}_{-2}^{0}\sqrt{1+{\left(\frac{\mathrm{d}}{\mathrm{dx}}(2{(1-\mathrm{x})}^{3/2}+3)\right)}^{2}}\mathrm{dx}\\ & =& {\int}_{-2}^{0}\sqrt{1+{\left(\left(2{\left(\frac{3}{2}\right)(1-\mathrm{x})}^{1/2}\right(-1)+0)\right)}^{2}}\mathrm{dx}\\ & =& {\int}_{-2}^{0}\sqrt{1+{\left(-3{(1-\mathrm{x})}^{1/2})\right)}^{2}}\mathrm{dx}\\ & =& {\int}_{-2}^{0}\sqrt{1+9(1-\mathrm{x})}\mathrm{dx}\\ & =& {\int}_{-2}^{0}\sqrt{10-9\mathrm{x}}\mathrm{dx}\end{array}$

Substitute $10-9x=u$, $dx=-\frac{1}{9}du$ into $\begin{array}{rcl}& & {\int}_{-2}^{0}\sqrt{10-9\mathrm{x}}\mathrm{dx}\end{array}$.

$\begin{array}{rcl}{\int}_{28}^{10}-\frac{\sqrt{u}}{9}du& =& \left(-\frac{1}{9}\right){\int}_{28}^{10}\sqrt{u}du\\ & =& -\left(-\frac{1}{9}\right){\int}_{10}^{28}\sqrt{u}du\\ & =& \left(\frac{1}{9}\right){\int}_{10}^{28}\left(\frac{2}{3}{u}^{3/2}\right)\\ & =& \left(\frac{1}{9}\right){\left[\frac{2}{3}{u}^{3/2}\right]}_{10}^{28}\\ & =& \frac{2}{27}{\left(28\right)}^{3/2}-\frac{2}{27}{\left(10\right)}^{3/2}\end{array}$

94% of StudySmarter users get better grades.

Sign up for free