• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q. 14

Expert-verified Found in: Page 362 ### Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861 # Verify that$\int \mathrm{cot}xdx=\mathrm{ln}\left(\mathrm{sin}x\right)+C$. (Do not try to solve the integral from scratch.)

It is verified that $\int \mathrm{cot}xdx=\mathrm{ln}\left(\mathrm{sin}x\right)+C.$

See the step by step solution

## Step 1. Given information.

The given integral is $\int \mathrm{cot}xdx=\mathrm{ln}\left(\mathrm{sin}x\right)+C.$

## Step 2. Verification.

We can write the differentiation as,

$\frac{d}{dx}\mathrm{ln}\left(\mathrm{sin}x\right)\phantom{\rule{0ex}{0ex}}=\frac{1}{\mathrm{sin}x}\left(\mathrm{cos}x\right)$

$=\frac{\mathrm{cos}x}{\mathrm{sin}x}\phantom{\rule{0ex}{0ex}}=cotx$

Hence, $\mathrm{ln}\left(\mathrm{sin}x\right)\text{is an anti-derivative of}\mathrm{cot}x\text{.}$

Therefore,

$\int \mathrm{cot}xdx=\mathrm{ln}\left(\mathrm{sin}x\right)+C$ ### Want to see more solutions like these? 