• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q. 6

Expert-verified
Calculus
Found in: Page 209
Calculus

Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

Suppose u(x)=3x2+1 and f(u)=u2+3u51-u. Use the chain rule to find role="math" localid="1648356625815" d dx (f(u(x))) without first finding the formula for f(u(x)).

The derivative of the function is:3x45x23x2+1+143x2+1-36x4-72x2-101-3x2+12

See the step by step solution

Step by Step Solution

Step 1. Given information:

The functions are:

u(x)=3x2+1

f=u2+3u51-u

The composite function is:f(u(x))

Step 2. Find derivative of u(x) using chain rule.

Since, u(x)=3x2+1u(x)=(3x2+1)12

Let v=3x2+1

Then u=v12

Derivative of u(v) with respect to v:

dudv=12(v)12-1 =12(v)-12 =12v=123x2+1

Derivative of v(x) with respect to x:

dvdx=ddx(3x2+1)=3.2x+0=6x

dudx=dudv×dvdx=123x2+1×6x=3x3x2+1

Step 3. Find the derivative of f(u):

f(u)=u2+3u51-u

Differentiate dfdu=(1-u)ddu(u2+3u5)-(u2+3u5)ddu(1-u)(1-u)2=(1-u)(2u+15u4)-(u2+3u5)(-1)(1-u)2=2u+15u4-2u2-15u5+u2+3u5(1-u)2=2u+15u4-u2-12u5(1-u)2

Step 4. Find derivative of f(u(x)):

By using the chain rule, the derivative of the function is:

ddx(f(u(x)))=dfdu×dudx

Substitute the values from step 3 and 4.

ddxf(u(x))=2u+15u4-u2-12u5(1-u)2×3x3x2+1

Substitute value of u(x)=3x2+1 and simplify:

ddx(f(u(x)))=23x2+1+153x2+14-3x2+12-123x2+151-3x2+12×3x3x2+1=3x2+12+153x2+13-3x2+1-123x2+141-3x2+12×3x3x2+1=3x2+153x2+13-3x2+1-123x2+141-3x2+12=3x2+153x2+13x2+1-3x2+1-123x2+121-3x2+12=3x2+45x23x2+1+153x2+1-3x2+1-123x4+1+6x21-3x2+12=3x2+45x23x2+1+143x2+1-36x4-12-72x21-3x2+12=3x45x23x2+1+143x2+1-36x4-72x2-101-3x2+12

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.