• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q. 64

Expert-verified
Calculus
Found in: Page 1040
Calculus

Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In the following lamina, all angles are right angles and the density is constant:

The Center of mass of lamina is 0,152.

See the step by step solution

Step by Step Solution

Step 1. Given information.   

Given lamina is a composition of rectangles.

density is constant.

Step 2. x coordinate Center of mass of the horizontal lamina 

Determine x coordinate Center of mass of the horizontal lamina where x varies from -3 to 3 and y varies from 4 to 6.

role="math" localid="1650346135185" x¯=Ωxρ(x,y)dAΩρ(x,y)dAx1¯=k3346xdydxk3346dydxx1¯=33[y]43xdx33[y]46dxx1¯=233xdx233dxx1¯=2[x22]332[x]33x1¯=0

Step 3. y coordinate the Center of mass of the horizontal lamina 

Determine y coordinate Center of mass of the horizontal lamina where x varies from -3 to 3 and y varies from 4 to 6.

role="math" localid="1650346174670" y¯=Ωyρ(x,y)dAΩρ(x,y)dAy1¯=3346kydydx3346kdydxy1¯=33[y22]46dx33[y]46dxy1¯=1033dx233dxy1¯=10[x]-332[x]33y1¯=5

So the center of mass of horizontal lamina is x1,y1=0,5.

Step 4. x coordinate Center of mass of the vertical lamina

Determine x coordinate Center of mass of the horizontal lamina where x varies from -1 to 1 and y varies from 1 to 4.

role="math" localid="1650346297780" x¯=Ωxρ(x,y)dAΩρ(x,y)dAx2¯=1114kx dydx1114k dydxx2¯=11[y]14xdx11[y]14dxx2¯=311xdx311dxx2¯=3[x22]113[x]11x2¯=0

Step 5. y coordinate the Center of mass of the vertical lamina

Determine y coordinate Center of mass of the horizontal lamina where x varies from -1 to 1 and y varies from 1 to 4

y¯=Ωyρ(x,y)dAΩρ(x,y)dAy¯2=1114yk dydx1114k dydxy¯2=11y221411[y]14dxy¯2=15211dx311dxy¯2=152[x]113[x]11y¯2=52

So the center of mass of vertical lamina is x2,y2=0,52.

Step 6. Center of mass of composition of the lamina.   

add coordinates of all center of mass of all laminas to determine the Center of mass of composition of the lamina.

(X¯,Y¯)=(x¯1,y¯1)+(x¯2,y¯2)(X¯,Y¯)=(0,5)+(0,52)(X¯,Y¯)=(0+0),5+52(X¯,Y¯)=(0,152)

So the center of mass of lamina is 0,152.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.