• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q. 64

Expert-verified Found in: Page 1040 ### Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861 # In the following lamina, all angles are right angles and the density is constant: The Center of mass of lamina is $\left(0,\frac{15}{2}\right).$

See the step by step solution

## Step 1. Given information.

Given lamina is a composition of rectangles.

density is constant.

## Step 2. x coordinate Center of mass of the horizontal lamina

Determine x coordinate Center of mass of the horizontal lamina where x varies from $-3\mathrm{to}3$and y varies from $4\mathrm{to}6.$

role="math" localid="1650346135185" $\overline{x}=\frac{{\iint }_{\mathrm{\Omega }}x\rho \left(x,y\right)dA}{{\iint }_{\mathrm{\Omega }}\rho \left(x,y\right)dA}\phantom{\rule{0ex}{0ex}}\begin{array}{rl}\overline{{x}_{1}}& =\frac{k{\int }_{-3}^{3}{\int }_{4}^{6}xdydx}{k{\int }_{-3}^{3}{\int }_{4}^{6}dydx}\\ \overline{{x}_{1}}& =\frac{{\int }_{-3}^{3}\left[y{\right]}_{4}^{3}xdx}{{\int }_{-3}^{3}\left[y{\right]}_{4}^{6}dx}\\ \overline{{x}_{1}}& =\frac{2{\int }_{-3}^{3}xdx}{2{\int }_{-3}^{3}dx}\\ \overline{{x}_{1}}& =\frac{2\left({\left[\frac{{x}^{2}}{2}\right]}_{-3}^{3}\right)}{2\left(\left[x{\right]}_{-3}^{3}\right)}\\ \overline{{x}_{1}}& =0\end{array}$

## Step 3. y coordinate the Center of mass of the horizontal lamina

Determine y coordinate Center of mass of the horizontal lamina where x varies from $-3\mathrm{to}3$and y varies from $4\mathrm{to}6.$

role="math" localid="1650346174670" $\begin{array}{rl}\overline{y}& =\frac{{\iint }_{\mathrm{\Omega }}y\rho \left(x,y\right)dA}{{\iint }_{\mathrm{\Omega }}\rho \left(x,y\right)dA}\\ \overline{{y}_{1}}& =\frac{{\int }_{-3}^{3}{\int }_{4}^{6}kydydx}{{\int }_{-3}^{3}{\int }_{4}^{6}kdydx}\\ \overline{{y}_{1}}& =\frac{{\int }_{-3}^{3}{\left[\frac{{y}^{2}}{2}\right]}_{-4}^{6}dx}{{\int }_{-3}^{3}\left[y{\right]}_{4}^{6}dx}\\ \overline{{y}_{1}}& =\frac{10{\int }_{-3}^{3}dx}{2{\int }_{-3}^{3}dx}\\ \overline{{y}_{1}}=& \frac{10\left(\left[x{\right]}_{-3}^{3}\right)}{2\left(\left[x{\right]}_{-3}^{3}\right)}\\ \overline{{y}_{1}}=& 5\end{array}$

So the center of mass of horizontal lamina is $\left(\overline{){x}_{1}},\overline{){y}_{1}}\right)=\left(0,5\right).$

## Step 4. x coordinate Center of mass of the vertical lamina

Determine x coordinate Center of mass of the horizontal lamina where x varies from $-1\mathrm{to}1$and y varies from $1\mathrm{to}4.$

role="math" localid="1650346297780" $\overline{x}=\frac{{\iint }_{\mathrm{\Omega }}x\rho \left(x,y\right)dA}{{\iint }_{\mathrm{\Omega }}\rho \left(x,y\right)dA}\phantom{\rule{0ex}{0ex}}\begin{array}{rl}\overline{{x}_{2}}& =\frac{{\int }_{-1}^{1}{\int }_{1}^{4}kxdydx}{{\int }_{-1}^{1}{\int }_{1}^{4}kdydx}\\ \overline{{x}_{2}}& =\frac{{\int }_{-1}^{1}\left[y{\right]}_{1}^{4}xdx}{{\int }_{-1}^{1}\left[y{\right]}_{1}^{4}dx}\\ \overline{{x}_{2}}& =\frac{3{\int }_{-1}^{1}xdx}{3{\int }_{-1}^{1}dx}\\ \overline{{x}_{2}}& =\frac{3\left({\left[\frac{{x}^{2}}{2}\right]}_{-1}^{1}\right)}{3\left(\left[x{\right]}_{-1}^{1}\right)}\\ \overline{{x}_{2}}& =0\end{array}$

## Step 5. y coordinate the Center of mass of the vertical lamina

Determine y coordinate Center of mass of the horizontal lamina where x varies from $-1\mathrm{to}1$and y varies from $1\mathrm{to}4$

$\begin{array}{rl}\overline{y}& =\frac{{\iint }_{\mathrm{\Omega }}y\rho \left(x,y\right)dA}{{\iint }_{\mathrm{\Omega }}\rho \left(x,y\right)dA}\\ {\overline{y}}_{2}& =\frac{{\int }_{-1}^{1}{\int }_{1}^{4}ykdydx}{{\int }_{-1}^{1}{\int }_{1}^{4}kdydx}\\ {\overline{y}}_{2}& =\frac{{\int }_{-1}^{1}{\left[\frac{{y}^{2}}{2}\right]}_{1}^{4}}{{\int }_{-1}^{1}\left[y{\right]}_{1}^{4}dx}\\ {\overline{y}}_{2}& =\frac{\frac{15}{2}{\int }_{-1}^{1}dx}{3{\int }_{-1}^{1}dx}\\ {\overline{y}}_{2}& =\frac{\frac{15}{2}\left[x{\right]}_{-1}^{1}}{3\left[x{\right]}_{-1}^{1}}\\ {\overline{y}}_{2}& =\frac{5}{2}\end{array}$

So the center of mass of vertical lamina is $\left(\overline{){x}_{2}},\overline{){y}_{2}}\right)=\left(0,\frac{5}{2}\right).$

## Step 6. Center of mass of composition of the lamina.

add coordinates of all center of mass of all laminas to determine the Center of mass of composition of the lamina.

$\begin{array}{rl}\left(\overline{X},\overline{Y}\right)& =\left({\overline{x}}_{1},{\overline{y}}_{1}\right)+\left({\overline{x}}_{2},{\overline{y}}_{2}\right)\\ \left(\overline{X},\overline{Y}\right)& =\left(0,5\right)+\left(0,\frac{5}{2}\right)\\ \left(\overline{X},\overline{Y}\right)& =\left(\left(0+0\right),\left(5+\frac{5}{2}\right)\right)\\ \left(\overline{X},\overline{Y}\right)& =\left(0,\frac{15}{2}\right)\end{array}$

So the center of mass of lamina is $\left(0,\frac{15}{2}\right).$ ### Want to see more solutions like these? 