• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q. 33

Expert-verified Found in: Page 107 ### Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861 # For each limit statement , use algebra to find δ > 0 in terms of $\epsilon$ > 0 so that if 0 < |x − c| < δ, then | f(x) − L| < $\epsilon$.$\underset{x\to 0}{\mathrm{lim}}\left(5{x}^{2}-1\right)=-1$

$\delta =\sqrt{\frac{\epsilon }{5}}$

See the step by step solution

## Step1. Given information.

We have been given a limit statement as $\underset{x\to 0}{\mathrm{lim}}\left(5{x}^{2}-1\right)=-1$.

We have to find $\delta \mathrm{in}\mathrm{terms}\mathrm{of}\epsilon$.

## Step 2. Use algebra.

From the given limit statement, we can identify

$f\left(x\right)=5{x}^{2}-1\phantom{\rule{0ex}{0ex}}c=0\phantom{\rule{0ex}{0ex}}L=-1\phantom{\rule{0ex}{0ex}}\mathrm{For}\epsilon >0\phantom{\rule{0ex}{0ex}}\left|\left(5{x}^{2}-1\right)-\left(-1\right)\right|<\epsilon \phantom{\rule{0ex}{0ex}}\left|5{x}^{2}-1+1\right|<\epsilon \phantom{\rule{0ex}{0ex}}\left|5{x}^{2}\right|<\epsilon \phantom{\rule{0ex}{0ex}}5\left|{x}^{2}\right|<\epsilon \phantom{\rule{0ex}{0ex}}\left|{x}^{2}\right|<\frac{\epsilon }{5}\phantom{\rule{0ex}{0ex}}|x|<\sqrt{\frac{\epsilon }{5}}\phantom{\rule{0ex}{0ex}}For0<|x-0|<\delta ,weget|x|<\sqrt{\frac{\epsilon }{5}}\phantom{\rule{0ex}{0ex}}\mathrm{Therefore},\delta =\sqrt{\frac{\epsilon }{5}}$ ### Want to see more solutions like these? 