• :00Days
  • :00Hours
  • :00Mins
  • 00Seconds
A new era for learning is coming soonSign up for free
Log In Start studying!

Select your language

Suggested languages for you:
Answers without the blur. Sign up and see all textbooks for free! Illustration

Q 29.

Expert-verified
Calculus
Found in: Page 730
Calculus

Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861

Answers without the blur.

Just sign up for free and you're in.

Illustration

Short Answer

In Exercises 24–31 find all polar coordinate representations for the point given in rectangular coordinates.

6,23

The polar coordinates are 43,π6+2 and -43,7π6+2, for any integer k.

See the step by step solution

Step by Step Solution

Step 1. Given information.

The given rectangular coordinate is:

6,23

Here x=6 and y=23.

Step 2. Find the value of r.

To find the value of r, use the formula r=x2+y2:

r=62+232r=36+12r=48r=±43

Step 3. Find the value of θ.

Use the formula tan θ=yx,

tan θ=yx; then θ=tan-1yxθ=tan-1236θ=tan-133; θ=tan-133·3θ=tan-113θ=π6, 7π6

Step 4. Find the polar coordinates.

Take r=43,θ=π6; then r,θ=43,π6,

The coordinates of r,θ are 43,π6+2, for any integer k.

Now take r=-43,θ=7π6; then r,θ=-43,7π6,

The coordinates of r,θ are -43,7π6+2, for any integer k.

Therefore, all the polar coordinates are 43,π6+2 and -43,7π6+2, for any integer k.

Recommended explanations on Math Textbooks

94% of StudySmarter users get better grades.

Sign up for free
94% of StudySmarter users get better grades.