• :00Days
• :00Hours
• :00Mins
• 00Seconds
A new era for learning is coming soon Suggested languages for you:

Europe

Answers without the blur. Sign up and see all textbooks for free! Q. 36

Expert-verified Found in: Page 625 ### Calculus

Book edition 1st
Author(s) Peter Kohn, Laura Taalman
Pages 1155 pages
ISBN 9781429241861 # Use either the divergence test or the integral test to determine whether the series in Exercises 32–43 converge or diverge. Explain why the series meets the hypotheses of the test you select.36. $\sum _{k=1}^{\infty }\frac{k}{{k}^{2}+3}$

The series is divergent.

See the step by step solution

## Step 1. Given information

We have been given the series $\sum _{k=1}^{\infty }\frac{k}{{k}^{2}+3}$

We have to determine whether the series converge or diverge.

## Step 2. Determine whether the series converge or diverge.

Consider function $f\left(x\right)=\frac{x}{3+{x}^{2}}$

The function is continuous, decreasing, with positive terms.

All the conditions of integral test are fulfilled.

So, integral test is applicable.

Consider the integral localid="1649088344379" ${\int }_{x=1}^{\infty }f\left(x\right)dx={\int }_{x=1}^{\infty }\frac{x}{3+{x}^{2}}dx$

localid="1649088398964" ${\int }_{x=1}^{\infty }f\left(x\right)dx\phantom{\rule{0ex}{0ex}}=\underset{k\to \infty }{\mathrm{lim}}{\int }_{x=1}^{k}\frac{x}{3+{x}^{2}}dx\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\underset{k\to \infty }{\mathrm{lim}}{\int }_{u=4}^{{k}^{2}+3}\frac{du}{u}\left(Put3+{x}^{2}=u⇒2xdx=du\right)\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\underset{k\to \infty }{\mathrm{lim}}{\left[\mathrm{ln}\left|u\right|\right]}_{4}^{{k}^{2}+3}\phantom{\rule{0ex}{0ex}}=\frac{1}{2}\underset{k\to \infty }{\mathrm{lim}}\left[\mathrm{ln}\left|{k}^{2}+3\right|-\mathrm{ln}\left|4\right|\right]\phantom{\rule{0ex}{0ex}}=\infty$

The integral diverges.

So, the series is divergent. ### Want to see more solutions like these? 