StudySmarter AI is coming soon!

- :00Days
- :00Hours
- :00Mins
- 00Seconds

A new era for learning is coming soonSign up for free

Suggested languages for you:

Americas

Europe

Q. 12

Expert-verifiedFound in: Page 417

Book edition
1st

Author(s)
Peter Kohn, Laura Taalman

Pages
1155 pages

ISBN
9781429241861

For each function *u(x)* in Exercises 9–12, write the differential *du* in terms of the differential *dx*.

$u\left(x\right)=\frac{1}{x}$

The differential *du* in terms of the differential *dx *is $du=-\frac{1}{{x}^{2}}dx$.

For given function *u(x)* we have to write the differential *du* in terms of the differential *dx*.

$u\left(x\right)=\frac{1}{x}$

$u\left(x\right)=\frac{1}{x}\phantom{\rule{0ex}{0ex}}u\left(x\right)={x}^{-1}\phantom{\rule{0ex}{0ex}}\frac{du}{dx}=-1{x}^{-2}\phantom{\rule{0ex}{0ex}}\frac{du}{dx}=-\frac{1}{{x}^{2}}\phantom{\rule{0ex}{0ex}}du=-\frac{1}{{x}^{2}}dx$

94% of StudySmarter users get better grades.

Sign up for free